Description: A limit ordinal is a non-zero ordinal that contains all the successors of its elements. Lemma 1.18 of Schloeder p. 2. Closely related to dflim4 . (Contributed by RP, 17-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | dflim7 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dflim4 | |
|
2 | ord0eln0 | |
|
3 | 2 | anbi1d | |
4 | 3 | biancomd | |
5 | 4 | pm5.32i | |
6 | 3anass | |
|
7 | 3anass | |
|
8 | 5 6 7 | 3bitr4i | |
9 | 1 8 | bitri | |