Metamath Proof Explorer


Theorem dflim7

Description: A limit ordinal is a non-zero ordinal that contains all the successors of its elements. Lemma 1.18 of Schloeder p. 2. Closely related to dflim4 . (Contributed by RP, 17-Jan-2025)

Ref Expression
Assertion dflim7 LimAOrdAbAsucbAA

Proof

Step Hyp Ref Expression
1 dflim4 LimAOrdAAbAsucbA
2 ord0eln0 OrdAAA
3 2 anbi1d OrdAAbAsucbAAbAsucbA
4 3 biancomd OrdAAbAsucbAbAsucbAA
5 4 pm5.32i OrdAAbAsucbAOrdAbAsucbAA
6 3anass OrdAAbAsucbAOrdAAbAsucbA
7 3anass OrdAbAsucbAAOrdAbAsucbAA
8 5 6 7 3bitr4i OrdAAbAsucbAOrdAbAsucbAA
9 1 8 bitri LimAOrdAbAsucbAA