Metamath Proof Explorer


Theorem dford4

Description: dford3 expressed in primitives to demonstrate shortness. (Contributed by Stefan O'Rear, 28-Oct-2014)

Ref Expression
Assertion dford4 OrdNabcaNbabNcbca

Proof

Step Hyp Ref Expression
1 dford3 OrdNTrNaNTra
2 dftr2 TrNbabaaNbN
3 19.3v caNbabNaNbabN
4 ancom aNbabaaN
5 4 imbi1i aNbabNbaaNbN
6 3 5 bitri caNbabNbaaNbN
7 6 2albii abcaNbabNabbaaNbN
8 alcom abbaaNbNbabaaNbN
9 7 8 bitri abcaNbabNbabaaNbN
10 2 9 bitr4i TrNabcaNbabN
11 df-ral aNTraaaNTra
12 dftr2 Tracbcbbaca
13 12 imbi2i aNTraaNcbcbbaca
14 nfv caN
15 nfv baN
16 14 15 19.21-2 cbaNcbbacaaNcbcbbaca
17 13 16 bitr4i aNTracbaNcbbaca
18 impexp aNcbbacaaNcbbaca
19 ancom cbbabacb
20 19 anbi2i aNcbbaaNbacb
21 anass aNbacbaNbacb
22 20 21 bitr4i aNcbbaaNbacb
23 22 imbi1i aNcbbacaaNbacbca
24 18 23 bitr3i aNcbbacaaNbacbca
25 impexp aNbacbcaaNbacbca
26 24 25 bitri aNcbbacaaNbacbca
27 26 2albii cbaNcbbacacbaNbacbca
28 alcom cbaNbacbcabcaNbacbca
29 17 27 28 3bitri aNTrabcaNbacbca
30 29 albii aaNTraabcaNbacbca
31 11 30 bitri aNTraabcaNbacbca
32 10 31 anbi12i TrNaNTraabcaNbabNabcaNbacbca
33 19.26 abcaNbabNbcaNbacbcaabcaNbabNabcaNbacbca
34 32 33 bitr4i TrNaNTraabcaNbabNbcaNbacbca
35 19.26-2 bcaNbabNaNbacbcabcaNbabNbcaNbacbca
36 pm4.76 aNbabNaNbacbcaaNbabNcbca
37 36 2albii bcaNbabNaNbacbcabcaNbabNcbca
38 35 37 bitr3i bcaNbabNbcaNbacbcabcaNbabNcbca
39 38 albii abcaNbabNbcaNbacbcaabcaNbabNcbca
40 1 34 39 3bitri OrdNabcaNbabNcbca