Metamath Proof Explorer


Theorem dford4

Description: dford3 expressed in primitives to demonstrate shortness. (Contributed by Stefan O'Rear, 28-Oct-2014)

Ref Expression
Assertion dford4 Ord N a b c a N b a b N c b c a

Proof

Step Hyp Ref Expression
1 dford3 Ord N Tr N a N Tr a
2 dftr2 Tr N b a b a a N b N
3 19.3v c a N b a b N a N b a b N
4 ancom a N b a b a a N
5 4 imbi1i a N b a b N b a a N b N
6 3 5 bitri c a N b a b N b a a N b N
7 6 2albii a b c a N b a b N a b b a a N b N
8 alcom a b b a a N b N b a b a a N b N
9 7 8 bitri a b c a N b a b N b a b a a N b N
10 2 9 bitr4i Tr N a b c a N b a b N
11 df-ral a N Tr a a a N Tr a
12 dftr2 Tr a c b c b b a c a
13 12 imbi2i a N Tr a a N c b c b b a c a
14 nfv c a N
15 nfv b a N
16 14 15 19.21-2 c b a N c b b a c a a N c b c b b a c a
17 13 16 bitr4i a N Tr a c b a N c b b a c a
18 impexp a N c b b a c a a N c b b a c a
19 ancom c b b a b a c b
20 19 anbi2i a N c b b a a N b a c b
21 anass a N b a c b a N b a c b
22 20 21 bitr4i a N c b b a a N b a c b
23 22 imbi1i a N c b b a c a a N b a c b c a
24 18 23 bitr3i a N c b b a c a a N b a c b c a
25 impexp a N b a c b c a a N b a c b c a
26 24 25 bitri a N c b b a c a a N b a c b c a
27 26 2albii c b a N c b b a c a c b a N b a c b c a
28 alcom c b a N b a c b c a b c a N b a c b c a
29 17 27 28 3bitri a N Tr a b c a N b a c b c a
30 29 albii a a N Tr a a b c a N b a c b c a
31 11 30 bitri a N Tr a a b c a N b a c b c a
32 10 31 anbi12i Tr N a N Tr a a b c a N b a b N a b c a N b a c b c a
33 19.26 a b c a N b a b N b c a N b a c b c a a b c a N b a b N a b c a N b a c b c a
34 32 33 bitr4i Tr N a N Tr a a b c a N b a b N b c a N b a c b c a
35 19.26-2 b c a N b a b N a N b a c b c a b c a N b a b N b c a N b a c b c a
36 pm4.76 a N b a b N a N b a c b c a a N b a b N c b c a
37 36 2albii b c a N b a b N a N b a c b c a b c a N b a b N c b c a
38 35 37 bitr3i b c a N b a b N b c a N b a c b c a b c a N b a b N c b c a
39 38 albii a b c a N b a b N b c a N b a c b c a a b c a N b a b N c b c a
40 1 34 39 3bitri Ord N a b c a N b a b N c b c a