Metamath Proof Explorer


Theorem wopprc

Description: Unrelated: Wiener pairs treat proper classes symmetrically. (Contributed by Stefan O'Rear, 19-Sep-2014)

Ref Expression
Assertion wopprc AVBV¬1𝑜AB

Proof

Step Hyp Ref Expression
1 id =A=A
2 dfsn2 =
3 1 2 eqtr3di =AA=
4 snex AV
5 0ex V
6 4 5 preqr1 A=A=
7 3 6 syl =AA=
8 snprc ¬AVA=
9 7 8 sylibr =A¬AV
10 8 biimpi ¬AVA=
11 10 preq1d ¬AVA=
12 2 11 eqtr4id ¬AV=A
13 9 12 impbii =A¬AV
14 13 con2bii AV¬=A
15 snprc ¬BVB=
16 eqcom B==B
17 15 16 bitr2i =B¬BV
18 17 con2bii BV¬=B
19 5 sneqr =B=B
20 sneq =B=B
21 19 20 impbii =B=B
22 18 21 xchbinxr BV¬=B
23 14 22 anbi12i AVBV¬=A¬=B
24 pm4.56 ¬=A¬=B¬=A=B
25 snex V
26 25 elpr AB=A=B
27 24 26 xchbinxr ¬=A¬=B¬AB
28 23 27 bitri AVBV¬AB
29 df1o2 1𝑜=
30 29 eleq1i 1𝑜ABAB
31 28 30 xchbinxr AVBV¬1𝑜AB