Metamath Proof Explorer


Theorem dfrelog

Description: The natural logarithm function on the positive reals in terms of the real exponential function. (Contributed by Paul Chapman, 21-Apr-2008)

Ref Expression
Assertion dfrelog log+=exp-1

Proof

Step Hyp Ref Expression
1 df-ima expranlog=ranexpranlog
2 relogrn xxranlog
3 2 ssriv ranlog
4 resabs1 ranlogexpranlog=exp
5 3 4 ax-mp expranlog=exp
6 5 rneqi ranexpranlog=ranexp
7 reeff1o exp:1-1 onto+
8 dff1o2 exp:1-1 onto+expFnFunexp-1ranexp=+
9 7 8 mpbi expFnFunexp-1ranexp=+
10 9 simp3i ranexp=+
11 1 6 10 3eqtri expranlog=+
12 11 reseq2i expranlog-1expranlog=expranlog-1+
13 5 cnveqi expranlog-1=exp-1
14 logf1o log:01-1 ontoranlog
15 f1ofun log:01-1 ontoranlogFunlog
16 14 15 ax-mp Funlog
17 dflog2 log=expranlog-1
18 17 funeqi FunlogFunexpranlog-1
19 16 18 mpbi Funexpranlog-1
20 funcnvres Funexpranlog-1expranlog-1=expranlog-1expranlog
21 19 20 ax-mp expranlog-1=expranlog-1expranlog
22 13 21 eqtr3i exp-1=expranlog-1expranlog
23 17 reseq1i log+=expranlog-1+
24 12 22 23 3eqtr4ri log+=exp-1