Metamath Proof Explorer


Theorem dfres3

Description: Alternate definition of restriction. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion dfres3 AB=AB×ranA

Proof

Step Hyp Ref Expression
1 df-res AB=AB×V
2 eleq1 x=yzxAyzA
3 vex zV
4 3 biantru yByBzV
5 vex yV
6 5 3 opelrn yzAzranA
7 6 biantrud yzAyByBzranA
8 4 7 bitr3id yzAyBzVyBzranA
9 2 8 syl6bi x=yzxAyBzVyBzranA
10 9 com12 xAx=yzyBzVyBzranA
11 10 pm5.32d xAx=yzyBzVx=yzyBzranA
12 11 2exbidv xAyzx=yzyBzVyzx=yzyBzranA
13 elxp xB×Vyzx=yzyBzV
14 elxp xB×ranAyzx=yzyBzranA
15 12 13 14 3bitr4g xAxB×VxB×ranA
16 15 pm5.32i xAxB×VxAxB×ranA
17 elin xAB×ranAxAxB×ranA
18 16 17 bitr4i xAxB×VxAB×ranA
19 18 ineqri AB×V=AB×ranA
20 1 19 eqtri AB=AB×ranA