Metamath Proof Explorer


Theorem dfssr2

Description: Alternate definition of the subset relation. (Contributed by Peter Mazsa, 9-Aug-2021)

Ref Expression
Assertion dfssr2 S = V × V ran E V E

Proof

Step Hyp Ref Expression
1 epel z E x z x
2 brvdif z V E y ¬ z E y
3 epel z E y z y
4 2 3 xchbinx z V E y ¬ z y
5 1 4 anbi12i z E x z V E y z x ¬ z y
6 5 exbii z z E x z V E y z z x ¬ z y
7 6 notbii ¬ z z E x z V E y ¬ z z x ¬ z y
8 dfss6 x y ¬ z z x ¬ z y
9 7 8 bitr4i ¬ z z E x z V E y x y
10 9 opabbii x y | ¬ z z E x z V E y = x y | x y
11 rnxrn ran E V E = x y | z z E x z V E y
12 11 difeq2i V × V ran E V E = V × V x y | z z E x z V E y
13 vvdifopab V × V x y | z z E x z V E y = x y | ¬ z z E x z V E y
14 12 13 eqtri V × V ran E V E = x y | ¬ z z E x z V E y
15 df-ssr S = x y | x y
16 10 14 15 3eqtr4ri S = V × V ran E V E