Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Subset relations
dfssr2
Next ⟩
relssr
Metamath Proof Explorer
Ascii
Unicode
Theorem
dfssr2
Description:
Alternate definition of the subset relation.
(Contributed by
Peter Mazsa
, 9-Aug-2021)
Ref
Expression
Assertion
dfssr2
⊢
S
=
V
×
V
∖
ran
⁡
E
⋉
V
∖
E
Proof
Step
Hyp
Ref
Expression
1
epel
⊢
z
E
x
↔
z
∈
x
2
brvdif
⊢
z
V
∖
E
y
↔
¬
z
E
y
3
epel
⊢
z
E
y
↔
z
∈
y
4
2
3
xchbinx
⊢
z
V
∖
E
y
↔
¬
z
∈
y
5
1
4
anbi12i
⊢
z
E
x
∧
z
V
∖
E
y
↔
z
∈
x
∧
¬
z
∈
y
6
5
exbii
⊢
∃
z
z
E
x
∧
z
V
∖
E
y
↔
∃
z
z
∈
x
∧
¬
z
∈
y
7
6
notbii
⊢
¬
∃
z
z
E
x
∧
z
V
∖
E
y
↔
¬
∃
z
z
∈
x
∧
¬
z
∈
y
8
dfss6
⊢
x
⊆
y
↔
¬
∃
z
z
∈
x
∧
¬
z
∈
y
9
7
8
bitr4i
⊢
¬
∃
z
z
E
x
∧
z
V
∖
E
y
↔
x
⊆
y
10
9
opabbii
⊢
x
y
|
¬
∃
z
z
E
x
∧
z
V
∖
E
y
=
x
y
|
x
⊆
y
11
rnxrn
⊢
ran
⁡
E
⋉
V
∖
E
=
x
y
|
∃
z
z
E
x
∧
z
V
∖
E
y
12
11
difeq2i
⊢
V
×
V
∖
ran
⁡
E
⋉
V
∖
E
=
V
×
V
∖
x
y
|
∃
z
z
E
x
∧
z
V
∖
E
y
13
vvdifopab
⊢
V
×
V
∖
x
y
|
∃
z
z
E
x
∧
z
V
∖
E
y
=
x
y
|
¬
∃
z
z
E
x
∧
z
V
∖
E
y
14
12
13
eqtri
⊢
V
×
V
∖
ran
⁡
E
⋉
V
∖
E
=
x
y
|
¬
∃
z
z
E
x
∧
z
V
∖
E
y
15
df-ssr
⊢
S
=
x
y
|
x
⊆
y
16
10
14
15
3eqtr4ri
⊢
S
=
V
×
V
∖
ran
⁡
E
⋉
V
∖
E