Step |
Hyp |
Ref |
Expression |
1 |
|
epel |
⊢ ( 𝑧 E 𝑥 ↔ 𝑧 ∈ 𝑥 ) |
2 |
|
brvdif |
⊢ ( 𝑧 ( V ∖ E ) 𝑦 ↔ ¬ 𝑧 E 𝑦 ) |
3 |
|
epel |
⊢ ( 𝑧 E 𝑦 ↔ 𝑧 ∈ 𝑦 ) |
4 |
2 3
|
xchbinx |
⊢ ( 𝑧 ( V ∖ E ) 𝑦 ↔ ¬ 𝑧 ∈ 𝑦 ) |
5 |
1 4
|
anbi12i |
⊢ ( ( 𝑧 E 𝑥 ∧ 𝑧 ( V ∖ E ) 𝑦 ) ↔ ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦 ) ) |
6 |
5
|
exbii |
⊢ ( ∃ 𝑧 ( 𝑧 E 𝑥 ∧ 𝑧 ( V ∖ E ) 𝑦 ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦 ) ) |
7 |
6
|
notbii |
⊢ ( ¬ ∃ 𝑧 ( 𝑧 E 𝑥 ∧ 𝑧 ( V ∖ E ) 𝑦 ) ↔ ¬ ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦 ) ) |
8 |
|
dfss6 |
⊢ ( 𝑥 ⊆ 𝑦 ↔ ¬ ∃ 𝑧 ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑦 ) ) |
9 |
7 8
|
bitr4i |
⊢ ( ¬ ∃ 𝑧 ( 𝑧 E 𝑥 ∧ 𝑧 ( V ∖ E ) 𝑦 ) ↔ 𝑥 ⊆ 𝑦 ) |
10 |
9
|
opabbii |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ¬ ∃ 𝑧 ( 𝑧 E 𝑥 ∧ 𝑧 ( V ∖ E ) 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ⊆ 𝑦 } |
11 |
|
rnxrn |
⊢ ran ( E ⋉ ( V ∖ E ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ( 𝑧 E 𝑥 ∧ 𝑧 ( V ∖ E ) 𝑦 ) } |
12 |
11
|
difeq2i |
⊢ ( ( V × V ) ∖ ran ( E ⋉ ( V ∖ E ) ) ) = ( ( V × V ) ∖ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ( 𝑧 E 𝑥 ∧ 𝑧 ( V ∖ E ) 𝑦 ) } ) |
13 |
|
vvdifopab |
⊢ ( ( V × V ) ∖ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ( 𝑧 E 𝑥 ∧ 𝑧 ( V ∖ E ) 𝑦 ) } ) = { 〈 𝑥 , 𝑦 〉 ∣ ¬ ∃ 𝑧 ( 𝑧 E 𝑥 ∧ 𝑧 ( V ∖ E ) 𝑦 ) } |
14 |
12 13
|
eqtri |
⊢ ( ( V × V ) ∖ ran ( E ⋉ ( V ∖ E ) ) ) = { 〈 𝑥 , 𝑦 〉 ∣ ¬ ∃ 𝑧 ( 𝑧 E 𝑥 ∧ 𝑧 ( V ∖ E ) 𝑦 ) } |
15 |
|
df-ssr |
⊢ S = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ⊆ 𝑦 } |
16 |
10 14 15
|
3eqtr4ri |
⊢ S = ( ( V × V ) ∖ ran ( E ⋉ ( V ∖ E ) ) ) |