| Step | Hyp | Ref | Expression | 
						
							| 1 |  | epel | ⊢ ( 𝑧  E  𝑥  ↔  𝑧  ∈  𝑥 ) | 
						
							| 2 |  | brvdif | ⊢ ( 𝑧 ( V  ∖   E  ) 𝑦  ↔  ¬  𝑧  E  𝑦 ) | 
						
							| 3 |  | epel | ⊢ ( 𝑧  E  𝑦  ↔  𝑧  ∈  𝑦 ) | 
						
							| 4 | 2 3 | xchbinx | ⊢ ( 𝑧 ( V  ∖   E  ) 𝑦  ↔  ¬  𝑧  ∈  𝑦 ) | 
						
							| 5 | 1 4 | anbi12i | ⊢ ( ( 𝑧  E  𝑥  ∧  𝑧 ( V  ∖   E  ) 𝑦 )  ↔  ( 𝑧  ∈  𝑥  ∧  ¬  𝑧  ∈  𝑦 ) ) | 
						
							| 6 | 5 | exbii | ⊢ ( ∃ 𝑧 ( 𝑧  E  𝑥  ∧  𝑧 ( V  ∖   E  ) 𝑦 )  ↔  ∃ 𝑧 ( 𝑧  ∈  𝑥  ∧  ¬  𝑧  ∈  𝑦 ) ) | 
						
							| 7 | 6 | notbii | ⊢ ( ¬  ∃ 𝑧 ( 𝑧  E  𝑥  ∧  𝑧 ( V  ∖   E  ) 𝑦 )  ↔  ¬  ∃ 𝑧 ( 𝑧  ∈  𝑥  ∧  ¬  𝑧  ∈  𝑦 ) ) | 
						
							| 8 |  | dfss6 | ⊢ ( 𝑥  ⊆  𝑦  ↔  ¬  ∃ 𝑧 ( 𝑧  ∈  𝑥  ∧  ¬  𝑧  ∈  𝑦 ) ) | 
						
							| 9 | 7 8 | bitr4i | ⊢ ( ¬  ∃ 𝑧 ( 𝑧  E  𝑥  ∧  𝑧 ( V  ∖   E  ) 𝑦 )  ↔  𝑥  ⊆  𝑦 ) | 
						
							| 10 | 9 | opabbii | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ¬  ∃ 𝑧 ( 𝑧  E  𝑥  ∧  𝑧 ( V  ∖   E  ) 𝑦 ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ⊆  𝑦 } | 
						
							| 11 |  | rnxrn | ⊢ ran  (  E   ⋉  ( V  ∖   E  ) )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧 ( 𝑧  E  𝑥  ∧  𝑧 ( V  ∖   E  ) 𝑦 ) } | 
						
							| 12 | 11 | difeq2i | ⊢ ( ( V  ×  V )  ∖  ran  (  E   ⋉  ( V  ∖   E  ) ) )  =  ( ( V  ×  V )  ∖  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧 ( 𝑧  E  𝑥  ∧  𝑧 ( V  ∖   E  ) 𝑦 ) } ) | 
						
							| 13 |  | vvdifopab | ⊢ ( ( V  ×  V )  ∖  { 〈 𝑥 ,  𝑦 〉  ∣  ∃ 𝑧 ( 𝑧  E  𝑥  ∧  𝑧 ( V  ∖   E  ) 𝑦 ) } )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ¬  ∃ 𝑧 ( 𝑧  E  𝑥  ∧  𝑧 ( V  ∖   E  ) 𝑦 ) } | 
						
							| 14 | 12 13 | eqtri | ⊢ ( ( V  ×  V )  ∖  ran  (  E   ⋉  ( V  ∖   E  ) ) )  =  { 〈 𝑥 ,  𝑦 〉  ∣  ¬  ∃ 𝑧 ( 𝑧  E  𝑥  ∧  𝑧 ( V  ∖   E  ) 𝑦 ) } | 
						
							| 15 |  | df-ssr | ⊢  S   =  { 〈 𝑥 ,  𝑦 〉  ∣  𝑥  ⊆  𝑦 } | 
						
							| 16 | 10 14 15 | 3eqtr4ri | ⊢  S   =  ( ( V  ×  V )  ∖  ran  (  E   ⋉  ( V  ∖   E  ) ) ) |