| Step | Hyp | Ref | Expression | 
						
							| 1 |  | epel |  |-  ( z _E x <-> z e. x ) | 
						
							| 2 |  | brvdif |  |-  ( z ( _V \ _E ) y <-> -. z _E y ) | 
						
							| 3 |  | epel |  |-  ( z _E y <-> z e. y ) | 
						
							| 4 | 2 3 | xchbinx |  |-  ( z ( _V \ _E ) y <-> -. z e. y ) | 
						
							| 5 | 1 4 | anbi12i |  |-  ( ( z _E x /\ z ( _V \ _E ) y ) <-> ( z e. x /\ -. z e. y ) ) | 
						
							| 6 | 5 | exbii |  |-  ( E. z ( z _E x /\ z ( _V \ _E ) y ) <-> E. z ( z e. x /\ -. z e. y ) ) | 
						
							| 7 | 6 | notbii |  |-  ( -. E. z ( z _E x /\ z ( _V \ _E ) y ) <-> -. E. z ( z e. x /\ -. z e. y ) ) | 
						
							| 8 |  | dfss6 |  |-  ( x C_ y <-> -. E. z ( z e. x /\ -. z e. y ) ) | 
						
							| 9 | 7 8 | bitr4i |  |-  ( -. E. z ( z _E x /\ z ( _V \ _E ) y ) <-> x C_ y ) | 
						
							| 10 | 9 | opabbii |  |-  { <. x , y >. | -. E. z ( z _E x /\ z ( _V \ _E ) y ) } = { <. x , y >. | x C_ y } | 
						
							| 11 |  | rnxrn |  |-  ran ( _E |X. ( _V \ _E ) ) = { <. x , y >. | E. z ( z _E x /\ z ( _V \ _E ) y ) } | 
						
							| 12 | 11 | difeq2i |  |-  ( ( _V X. _V ) \ ran ( _E |X. ( _V \ _E ) ) ) = ( ( _V X. _V ) \ { <. x , y >. | E. z ( z _E x /\ z ( _V \ _E ) y ) } ) | 
						
							| 13 |  | vvdifopab |  |-  ( ( _V X. _V ) \ { <. x , y >. | E. z ( z _E x /\ z ( _V \ _E ) y ) } ) = { <. x , y >. | -. E. z ( z _E x /\ z ( _V \ _E ) y ) } | 
						
							| 14 | 12 13 | eqtri |  |-  ( ( _V X. _V ) \ ran ( _E |X. ( _V \ _E ) ) ) = { <. x , y >. | -. E. z ( z _E x /\ z ( _V \ _E ) y ) } | 
						
							| 15 |  | df-ssr |  |-  _S = { <. x , y >. | x C_ y } | 
						
							| 16 | 10 14 15 | 3eqtr4ri |  |-  _S = ( ( _V X. _V ) \ ran ( _E |X. ( _V \ _E ) ) ) |