Metamath Proof Explorer


Theorem dfssr2

Description: Alternate definition of the subset relation. (Contributed by Peter Mazsa, 9-Aug-2021)

Ref Expression
Assertion dfssr2
|- _S = ( ( _V X. _V ) \ ran ( _E |X. ( _V \ _E ) ) )

Proof

Step Hyp Ref Expression
1 epel
 |-  ( z _E x <-> z e. x )
2 brvdif
 |-  ( z ( _V \ _E ) y <-> -. z _E y )
3 epel
 |-  ( z _E y <-> z e. y )
4 2 3 xchbinx
 |-  ( z ( _V \ _E ) y <-> -. z e. y )
5 1 4 anbi12i
 |-  ( ( z _E x /\ z ( _V \ _E ) y ) <-> ( z e. x /\ -. z e. y ) )
6 5 exbii
 |-  ( E. z ( z _E x /\ z ( _V \ _E ) y ) <-> E. z ( z e. x /\ -. z e. y ) )
7 6 notbii
 |-  ( -. E. z ( z _E x /\ z ( _V \ _E ) y ) <-> -. E. z ( z e. x /\ -. z e. y ) )
8 dfss6
 |-  ( x C_ y <-> -. E. z ( z e. x /\ -. z e. y ) )
9 7 8 bitr4i
 |-  ( -. E. z ( z _E x /\ z ( _V \ _E ) y ) <-> x C_ y )
10 9 opabbii
 |-  { <. x , y >. | -. E. z ( z _E x /\ z ( _V \ _E ) y ) } = { <. x , y >. | x C_ y }
11 rnxrn
 |-  ran ( _E |X. ( _V \ _E ) ) = { <. x , y >. | E. z ( z _E x /\ z ( _V \ _E ) y ) }
12 11 difeq2i
 |-  ( ( _V X. _V ) \ ran ( _E |X. ( _V \ _E ) ) ) = ( ( _V X. _V ) \ { <. x , y >. | E. z ( z _E x /\ z ( _V \ _E ) y ) } )
13 vvdifopab
 |-  ( ( _V X. _V ) \ { <. x , y >. | E. z ( z _E x /\ z ( _V \ _E ) y ) } ) = { <. x , y >. | -. E. z ( z _E x /\ z ( _V \ _E ) y ) }
14 12 13 eqtri
 |-  ( ( _V X. _V ) \ ran ( _E |X. ( _V \ _E ) ) ) = { <. x , y >. | -. E. z ( z _E x /\ z ( _V \ _E ) y ) }
15 df-ssr
 |-  _S = { <. x , y >. | x C_ y }
16 10 14 15 3eqtr4ri
 |-  _S = ( ( _V X. _V ) \ ran ( _E |X. ( _V \ _E ) ) )