Metamath Proof Explorer


Theorem dfssr2

Description: Alternate definition of the subset relation. (Contributed by Peter Mazsa, 9-Aug-2021)

Ref Expression
Assertion dfssr2 S=V×VranEVE

Proof

Step Hyp Ref Expression
1 epel zExzx
2 brvdif zVEy¬zEy
3 epel zEyzy
4 2 3 xchbinx zVEy¬zy
5 1 4 anbi12i zExzVEyzx¬zy
6 5 exbii zzExzVEyzzx¬zy
7 6 notbii ¬zzExzVEy¬zzx¬zy
8 dfss6 xy¬zzx¬zy
9 7 8 bitr4i ¬zzExzVEyxy
10 9 opabbii xy|¬zzExzVEy=xy|xy
11 rnxrn ranEVE=xy|zzExzVEy
12 11 difeq2i V×VranEVE=V×Vxy|zzExzVEy
13 vvdifopab V×Vxy|zzExzVEy=xy|¬zzExzVEy
14 12 13 eqtri V×VranEVE=xy|¬zzExzVEy
15 df-ssr S=xy|xy
16 10 14 15 3eqtr4ri S=V×VranEVE