Metamath Proof Explorer


Theorem dfwppr

Description: Alternate definition of aweak pseudoprime X , which fulfils ( N ^ X ) == N (modulo X ), see Wikipedia "Fermat pseudoprime", https://en.wikipedia.org/wiki/Fermat_pseudoprime , 29-May-2023. (Contributed by AV, 31-May-2023)

Ref Expression
Assertion dfwppr NXNXmodX=NmodXXNXN

Proof

Step Hyp Ref Expression
1 simpr NXX
2 nnz NN
3 nnnn0 XX0
4 zexpcl NX0NX
5 2 3 4 syl2an NXNX
6 2 adantr NXN
7 moddvds XNXNNXmodX=NmodXXNXN
8 1 5 6 7 syl3anc NXNXmodX=NmodXXNXN