Metamath Proof Explorer


Theorem dgraaval

Description: Value of the degree function on an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014) (Revised by AV, 29-Sep-2020)

Ref Expression
Assertion dgraaval A𝔸deg𝔸A=supd|pPoly0𝑝degp=dpA=0<

Proof

Step Hyp Ref Expression
1 fveqeq2 a=Apa=0pA=0
2 1 anbi2d a=Adegp=dpa=0degp=dpA=0
3 2 rexbidv a=ApPoly0𝑝degp=dpa=0pPoly0𝑝degp=dpA=0
4 3 rabbidv a=Ad|pPoly0𝑝degp=dpa=0=d|pPoly0𝑝degp=dpA=0
5 4 infeq1d a=Asupd|pPoly0𝑝degp=dpa=0<=supd|pPoly0𝑝degp=dpA=0<
6 df-dgraa deg𝔸=a𝔸supd|pPoly0𝑝degp=dpa=0<
7 ltso <Or
8 7 infex supd|pPoly0𝑝degp=dpA=0<V
9 5 6 8 fvmpt A𝔸deg𝔸A=supd|pPoly0𝑝degp=dpA=0<