Metamath Proof Explorer


Theorem dia2dim

Description: A two-dimensional subspace of partial vector space A is closed, or equivalently, the isomorphism of a join of two atoms is a subset of the subspace sum of the isomorphisms of each atom (and thus they are equal, as shown later for the full vector space H). (Contributed by NM, 9-Sep-2014)

Ref Expression
Hypotheses dia2dim.l ˙ = K
dia2dim.j ˙ = join K
dia2dim.a A = Atoms K
dia2dim.h H = LHyp K
dia2dim.y Y = DVecA K W
dia2dim.pl ˙ = LSSum Y
dia2dim.i I = DIsoA K W
dia2dim.k φ K HL W H
dia2dim.u φ U A U ˙ W
dia2dim.v φ V A V ˙ W
Assertion dia2dim φ I U ˙ V I U ˙ I V

Proof

Step Hyp Ref Expression
1 dia2dim.l ˙ = K
2 dia2dim.j ˙ = join K
3 dia2dim.a A = Atoms K
4 dia2dim.h H = LHyp K
5 dia2dim.y Y = DVecA K W
6 dia2dim.pl ˙ = LSSum Y
7 dia2dim.i I = DIsoA K W
8 dia2dim.k φ K HL W H
9 dia2dim.u φ U A U ˙ W
10 dia2dim.v φ V A V ˙ W
11 eqid meet K = meet K
12 eqid LTrn K W = LTrn K W
13 eqid trL K W = trL K W
14 eqid LSubSp Y = LSubSp Y
15 eqid LSpan Y = LSpan Y
16 1 2 11 3 4 12 13 5 14 6 15 7 8 9 10 dia2dimlem13 φ I U ˙ V I U ˙ I V