Metamath Proof Explorer


Theorem dia2dim

Description: A two-dimensional subspace of partial vector space A is closed, or equivalently, the isomorphism of a join of two atoms is a subset of the subspace sum of the isomorphisms of each atom (and thus they are equal, as shown later for the full vector space H). (Contributed by NM, 9-Sep-2014)

Ref Expression
Hypotheses dia2dim.l ˙=K
dia2dim.j ˙=joinK
dia2dim.a A=AtomsK
dia2dim.h H=LHypK
dia2dim.y Y=DVecAKW
dia2dim.pl ˙=LSSumY
dia2dim.i I=DIsoAKW
dia2dim.k φKHLWH
dia2dim.u φUAU˙W
dia2dim.v φVAV˙W
Assertion dia2dim φIU˙VIU˙IV

Proof

Step Hyp Ref Expression
1 dia2dim.l ˙=K
2 dia2dim.j ˙=joinK
3 dia2dim.a A=AtomsK
4 dia2dim.h H=LHypK
5 dia2dim.y Y=DVecAKW
6 dia2dim.pl ˙=LSSumY
7 dia2dim.i I=DIsoAKW
8 dia2dim.k φKHLWH
9 dia2dim.u φUAU˙W
10 dia2dim.v φVAV˙W
11 eqid meetK=meetK
12 eqid LTrnKW=LTrnKW
13 eqid trLKW=trLKW
14 eqid LSubSpY=LSubSpY
15 eqid LSpanY=LSpanY
16 1 2 11 3 4 12 13 5 14 6 15 7 8 9 10 dia2dimlem13 φIU˙VIU˙IV