Metamath Proof Explorer


Theorem diadmclN

Description: A member of domain of the partial isomorphism A is a lattice element. (Contributed by NM, 5-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses diadmcl.b B=BaseK
diadmcl.h H=LHypK
diadmcl.i I=DIsoAKW
Assertion diadmclN KVWHXdomIXB

Proof

Step Hyp Ref Expression
1 diadmcl.b B=BaseK
2 diadmcl.h H=LHypK
3 diadmcl.i I=DIsoAKW
4 eqid K=K
5 1 4 2 3 diaeldm KVWHXdomIXBXKW
6 5 simprbda KVWHXdomIXB