Metamath Proof Explorer


Theorem diag1cl

Description: The constant functor of X is a functor. (Contributed by Mario Carneiro, 6-Jan-2017) (Revised by Mario Carneiro, 15-Jan-2017)

Ref Expression
Hypotheses diagval.l L = C Δ func D
diagval.c φ C Cat
diagval.d φ D Cat
diag11.a A = Base C
diag11.c φ X A
diag11.k K = 1 st L X
Assertion diag1cl φ K D Func C

Proof

Step Hyp Ref Expression
1 diagval.l L = C Δ func D
2 diagval.c φ C Cat
3 diagval.d φ D Cat
4 diag11.a A = Base C
5 diag11.c φ X A
6 diag11.k K = 1 st L X
7 eqid D FuncCat C = D FuncCat C
8 7 fucbas D Func C = Base D FuncCat C
9 relfunc Rel C Func D FuncCat C
10 1 2 3 7 diagcl φ L C Func D FuncCat C
11 1st2ndbr Rel C Func D FuncCat C L C Func D FuncCat C 1 st L C Func D FuncCat C 2 nd L
12 9 10 11 sylancr φ 1 st L C Func D FuncCat C 2 nd L
13 4 8 12 funcf1 φ 1 st L : A D Func C
14 13 5 ffvelrnd φ 1 st L X D Func C
15 6 14 eqeltrid φ K D Func C