Metamath Proof Explorer


Theorem diag2f1

Description: If B is non-empty, the morphism part of a diagonal functor is injective functions from hom-sets into sets of natural transformations. (Contributed by Zhi Wang, 21-Oct-2025)

Ref Expression
Hypotheses diag2f1.l L = C Δ func D
diag2f1.a A = Base C
diag2f1.b B = Base D
diag2f1.h H = Hom C
diag2f1.c φ C Cat
diag2f1.d φ D Cat
diag2f1.x φ X A
diag2f1.y φ Y A
diag2f1.0 φ B
diag2f1.n N = D Nat C
Assertion diag2f1 φ X 2 nd L Y : X H Y 1-1 1 st L X N 1 st L Y

Proof

Step Hyp Ref Expression
1 diag2f1.l L = C Δ func D
2 diag2f1.a A = Base C
3 diag2f1.b B = Base D
4 diag2f1.h H = Hom C
5 diag2f1.c φ C Cat
6 diag2f1.d φ D Cat
7 diag2f1.x φ X A
8 diag2f1.y φ Y A
9 diag2f1.0 φ B
10 diag2f1.n N = D Nat C
11 eqid D FuncCat C = D FuncCat C
12 11 10 fuchom N = Hom D FuncCat C
13 1 5 6 11 diagcl φ L C Func D FuncCat C
14 13 func1st2nd φ 1 st L C Func D FuncCat C 2 nd L
15 2 4 12 14 7 8 funcf2 φ X 2 nd L Y : X H Y 1 st L X N 1 st L Y
16 5 adantr φ f X H Y g X H Y C Cat
17 6 adantr φ f X H Y g X H Y D Cat
18 7 adantr φ f X H Y g X H Y X A
19 8 adantr φ f X H Y g X H Y Y A
20 9 adantr φ f X H Y g X H Y B
21 simprl φ f X H Y g X H Y f X H Y
22 simprr φ f X H Y g X H Y g X H Y
23 1 2 3 4 16 17 18 19 20 21 22 diag2f1lem φ f X H Y g X H Y X 2 nd L Y f = X 2 nd L Y g f = g
24 23 ralrimivva φ f X H Y g X H Y X 2 nd L Y f = X 2 nd L Y g f = g
25 dff13 X 2 nd L Y : X H Y 1-1 1 st L X N 1 st L Y X 2 nd L Y : X H Y 1 st L X N 1 st L Y f X H Y g X H Y X 2 nd L Y f = X 2 nd L Y g f = g
26 15 24 25 sylanbrc φ X 2 nd L Y : X H Y 1-1 1 st L X N 1 st L Y