Metamath Proof Explorer


Theorem dibffval

Description: The partial isomorphism B for a lattice K . (Contributed by NM, 8-Dec-2013)

Ref Expression
Hypotheses dibval.b B=BaseK
dibval.h H=LHypK
Assertion dibffval KVDIsoBK=wHxdomDIsoAKwDIsoAKwx×fLTrnKwIB

Proof

Step Hyp Ref Expression
1 dibval.b B=BaseK
2 dibval.h H=LHypK
3 elex KVKV
4 fveq2 k=KLHypk=LHypK
5 4 2 eqtr4di k=KLHypk=H
6 fveq2 k=KDIsoAk=DIsoAK
7 6 fveq1d k=KDIsoAkw=DIsoAKw
8 7 dmeqd k=KdomDIsoAkw=domDIsoAKw
9 7 fveq1d k=KDIsoAkwx=DIsoAKwx
10 fveq2 k=KLTrnk=LTrnK
11 10 fveq1d k=KLTrnkw=LTrnKw
12 fveq2 k=KBasek=BaseK
13 12 1 eqtr4di k=KBasek=B
14 13 reseq2d k=KIBasek=IB
15 11 14 mpteq12dv k=KfLTrnkwIBasek=fLTrnKwIB
16 15 sneqd k=KfLTrnkwIBasek=fLTrnKwIB
17 9 16 xpeq12d k=KDIsoAkwx×fLTrnkwIBasek=DIsoAKwx×fLTrnKwIB
18 8 17 mpteq12dv k=KxdomDIsoAkwDIsoAkwx×fLTrnkwIBasek=xdomDIsoAKwDIsoAKwx×fLTrnKwIB
19 5 18 mpteq12dv k=KwLHypkxdomDIsoAkwDIsoAkwx×fLTrnkwIBasek=wHxdomDIsoAKwDIsoAKwx×fLTrnKwIB
20 df-dib DIsoB=kVwLHypkxdomDIsoAkwDIsoAkwx×fLTrnkwIBasek
21 19 20 2 mptfvmpt KVDIsoBK=wHxdomDIsoAKwDIsoAKwx×fLTrnKwIB
22 3 21 syl KVDIsoBK=wHxdomDIsoAKwDIsoAKwx×fLTrnKwIB