Metamath Proof Explorer


Theorem dicval2

Description: The partial isomorphism C for a lattice K . (Contributed by NM, 20-Feb-2014)

Ref Expression
Hypotheses dicval.l ˙ = K
dicval.a A = Atoms K
dicval.h H = LHyp K
dicval.p P = oc K W
dicval.t T = LTrn K W
dicval.e E = TEndo K W
dicval.i I = DIsoC K W
dicval2.g G = ι g T | g P = Q
Assertion dicval2 K V W H Q A ¬ Q ˙ W I Q = f s | f = s G s E

Proof

Step Hyp Ref Expression
1 dicval.l ˙ = K
2 dicval.a A = Atoms K
3 dicval.h H = LHyp K
4 dicval.p P = oc K W
5 dicval.t T = LTrn K W
6 dicval.e E = TEndo K W
7 dicval.i I = DIsoC K W
8 dicval2.g G = ι g T | g P = Q
9 1 2 3 4 5 6 7 dicval K V W H Q A ¬ Q ˙ W I Q = f s | f = s ι g T | g P = Q s E
10 8 fveq2i s G = s ι g T | g P = Q
11 10 eqeq2i f = s G f = s ι g T | g P = Q
12 11 anbi1i f = s G s E f = s ι g T | g P = Q s E
13 12 opabbii f s | f = s G s E = f s | f = s ι g T | g P = Q s E
14 9 13 eqtr4di K V W H Q A ¬ Q ˙ W I Q = f s | f = s G s E