Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
dicval2
Next ⟩
dicelval3
Metamath Proof Explorer
Ascii
Unicode
Theorem
dicval2
Description:
The partial isomorphism C for a lattice
K
.
(Contributed by
NM
, 20-Feb-2014)
Ref
Expression
Hypotheses
dicval.l
⊢
≤
˙
=
≤
K
dicval.a
⊢
A
=
Atoms
⁡
K
dicval.h
⊢
H
=
LHyp
⁡
K
dicval.p
⊢
P
=
oc
⁡
K
⁡
W
dicval.t
⊢
T
=
LTrn
⁡
K
⁡
W
dicval.e
⊢
E
=
TEndo
⁡
K
⁡
W
dicval.i
⊢
I
=
DIsoC
⁡
K
⁡
W
dicval2.g
⊢
G
=
ι
g
∈
T
|
g
⁡
P
=
Q
Assertion
dicval2
⊢
K
∈
V
∧
W
∈
H
∧
Q
∈
A
∧
¬
Q
≤
˙
W
→
I
⁡
Q
=
f
s
|
f
=
s
⁡
G
∧
s
∈
E
Proof
Step
Hyp
Ref
Expression
1
dicval.l
⊢
≤
˙
=
≤
K
2
dicval.a
⊢
A
=
Atoms
⁡
K
3
dicval.h
⊢
H
=
LHyp
⁡
K
4
dicval.p
⊢
P
=
oc
⁡
K
⁡
W
5
dicval.t
⊢
T
=
LTrn
⁡
K
⁡
W
6
dicval.e
⊢
E
=
TEndo
⁡
K
⁡
W
7
dicval.i
⊢
I
=
DIsoC
⁡
K
⁡
W
8
dicval2.g
⊢
G
=
ι
g
∈
T
|
g
⁡
P
=
Q
9
1
2
3
4
5
6
7
dicval
⊢
K
∈
V
∧
W
∈
H
∧
Q
∈
A
∧
¬
Q
≤
˙
W
→
I
⁡
Q
=
f
s
|
f
=
s
⁡
ι
g
∈
T
|
g
⁡
P
=
Q
∧
s
∈
E
10
8
fveq2i
⊢
s
⁡
G
=
s
⁡
ι
g
∈
T
|
g
⁡
P
=
Q
11
10
eqeq2i
⊢
f
=
s
⁡
G
↔
f
=
s
⁡
ι
g
∈
T
|
g
⁡
P
=
Q
12
11
anbi1i
⊢
f
=
s
⁡
G
∧
s
∈
E
↔
f
=
s
⁡
ι
g
∈
T
|
g
⁡
P
=
Q
∧
s
∈
E
13
12
opabbii
⊢
f
s
|
f
=
s
⁡
G
∧
s
∈
E
=
f
s
|
f
=
s
⁡
ι
g
∈
T
|
g
⁡
P
=
Q
∧
s
∈
E
14
9
13
eqtr4di
⊢
K
∈
V
∧
W
∈
H
∧
Q
∈
A
∧
¬
Q
≤
˙
W
→
I
⁡
Q
=
f
s
|
f
=
s
⁡
G
∧
s
∈
E