Metamath Proof Explorer


Theorem difres

Description: Case when class difference in unaffected by restriction. (Contributed by Thierry Arnoux, 1-Jan-2020)

Ref Expression
Assertion difres A B × V A C B = A C

Proof

Step Hyp Ref Expression
1 df-res C B = C B × V
2 1 difeq2i A C B = A C B × V
3 difindi A C B × V = A C A B × V
4 ssdif A B × V A B × V B × V B × V
5 difid B × V B × V =
6 4 5 sseqtrdi A B × V A B × V
7 ss0 A B × V A B × V =
8 6 7 syl A B × V A B × V =
9 8 uneq2d A B × V A C A B × V = A C
10 3 9 eqtrid A B × V A C B × V = A C
11 un0 A C = A C
12 10 11 eqtrdi A B × V A C B × V = A C
13 2 12 eqtrid A B × V A C B = A C