Metamath Proof Explorer


Theorem difxp

Description: Difference of Cartesian products, expressed in terms of a union of Cartesian products of differences. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 26-Jun-2014)

Ref Expression
Assertion difxp C×DA×B=CA×DC×DB

Proof

Step Hyp Ref Expression
1 difss C×DA×BC×D
2 relxp RelC×D
3 relss C×DA×BC×DRelC×DRelC×DA×B
4 1 2 3 mp2 RelC×DA×B
5 relxp RelCA×D
6 relxp RelC×DB
7 relun RelCA×DC×DBRelCA×DRelC×DB
8 5 6 7 mpbir2an RelCA×DC×DB
9 ianor ¬xAyB¬xA¬yB
10 9 anbi2i xCyD¬xAyBxCyD¬xA¬yB
11 andi xCyD¬xA¬yBxCyD¬xAxCyD¬yB
12 10 11 bitri xCyD¬xAyBxCyD¬xAxCyD¬yB
13 opelxp xyC×DxCyD
14 opelxp xyA×BxAyB
15 14 notbii ¬xyA×B¬xAyB
16 13 15 anbi12i xyC×D¬xyA×BxCyD¬xAyB
17 opelxp xyCA×DxCAyD
18 eldif xCAxC¬xA
19 18 anbi1i xCAyDxC¬xAyD
20 an32 xC¬xAyDxCyD¬xA
21 19 20 bitri xCAyDxCyD¬xA
22 17 21 bitri xyCA×DxCyD¬xA
23 eldif yDByD¬yB
24 23 anbi2i xCyDBxCyD¬yB
25 opelxp xyC×DBxCyDB
26 anass xCyD¬yBxCyD¬yB
27 24 25 26 3bitr4i xyC×DBxCyD¬yB
28 22 27 orbi12i xyCA×DxyC×DBxCyD¬xAxCyD¬yB
29 12 16 28 3bitr4i xyC×D¬xyA×BxyCA×DxyC×DB
30 eldif xyC×DA×BxyC×D¬xyA×B
31 elun xyCA×DC×DBxyCA×DxyC×DB
32 29 30 31 3bitr4i xyC×DA×BxyCA×DC×DB
33 4 8 32 eqrelriiv C×DA×B=CA×DC×DB