Description: Difference of Cartesian products, expressed in terms of a union of Cartesian products of differences. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 26-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | difxp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss | |
|
2 | relxp | |
|
3 | relss | |
|
4 | 1 2 3 | mp2 | |
5 | relxp | |
|
6 | relxp | |
|
7 | relun | |
|
8 | 5 6 7 | mpbir2an | |
9 | ianor | |
|
10 | 9 | anbi2i | |
11 | andi | |
|
12 | 10 11 | bitri | |
13 | opelxp | |
|
14 | opelxp | |
|
15 | 14 | notbii | |
16 | 13 15 | anbi12i | |
17 | opelxp | |
|
18 | eldif | |
|
19 | 18 | anbi1i | |
20 | an32 | |
|
21 | 19 20 | bitri | |
22 | 17 21 | bitri | |
23 | eldif | |
|
24 | 23 | anbi2i | |
25 | opelxp | |
|
26 | anass | |
|
27 | 24 25 26 | 3bitr4i | |
28 | 22 27 | orbi12i | |
29 | 12 16 28 | 3bitr4i | |
30 | eldif | |
|
31 | elun | |
|
32 | 29 30 31 | 3bitr4i | |
33 | 4 8 32 | eqrelriiv | |