Metamath Proof Explorer


Theorem dihcnvid2

Description: The isomorphism of a converse isomorphism. (Contributed by NM, 5-Aug-2014)

Ref Expression
Hypotheses dihcnvid2.h H=LHypK
dihcnvid2.i I=DIsoHKW
Assertion dihcnvid2 KHLWHXranIII-1X=X

Proof

Step Hyp Ref Expression
1 dihcnvid2.h H=LHypK
2 dihcnvid2.i I=DIsoHKW
3 eqid BaseK=BaseK
4 eqid DVecHKW=DVecHKW
5 eqid LSubSpDVecHKW=LSubSpDVecHKW
6 3 1 2 4 5 dihf11 KHLWHI:BaseK1-1LSubSpDVecHKW
7 f1f1orn I:BaseK1-1LSubSpDVecHKWI:BaseK1-1 ontoranI
8 6 7 syl KHLWHI:BaseK1-1 ontoranI
9 f1ocnvfv2 I:BaseK1-1 ontoranIXranIII-1X=X
10 8 9 sylan KHLWHXranIII-1X=X