Metamath Proof Explorer


Theorem dihrnss

Description: The isomorphism H maps to a set of vectors. (Contributed by NM, 14-Mar-2014)

Ref Expression
Hypotheses dihrnss.h H=LHypK
dihrnss.u U=DVecHKW
dihrnss.i I=DIsoHKW
dihrnss.v V=BaseU
Assertion dihrnss KHLWHXranIXV

Proof

Step Hyp Ref Expression
1 dihrnss.h H=LHypK
2 dihrnss.u U=DVecHKW
3 dihrnss.i I=DIsoHKW
4 dihrnss.v V=BaseU
5 eqid LSubSpU=LSubSpU
6 1 2 3 5 dihrnlss KHLWHXranIXLSubSpU
7 4 5 lssss XLSubSpUXV
8 6 7 syl KHLWHXranIXV