Metamath Proof Explorer


Theorem dirref

Description: A direction is reflexive. (Contributed by Jeff Hankins, 25-Nov-2009) (Revised by Mario Carneiro, 22-Nov-2013)

Ref Expression
Hypothesis dirref.1 X = dom R
Assertion dirref R DirRel A X A R A

Proof

Step Hyp Ref Expression
1 dirref.1 X = dom R
2 dirdm R DirRel dom R = R
3 1 2 eqtrid R DirRel X = R
4 3 reseq2d R DirRel I X = I R
5 eqid R = R
6 5 isdir R DirRel R DirRel Rel R I R R R R R R × R R -1 R
7 6 ibi R DirRel Rel R I R R R R R R × R R -1 R
8 7 simplrd R DirRel I R R
9 4 8 eqsstrd R DirRel I X R
10 9 ssbrd R DirRel A I X A A R A
11 eqid A = A
12 resieq A X A X A I X A A = A
13 12 anidms A X A I X A A = A
14 11 13 mpbiri A X A I X A
15 10 14 impel R DirRel A X A R A