Description: Lemma for disjdmqseq via disjdmqs . (Contributed by Peter Mazsa, 16-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | disjdmqsss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjrel | |
|
2 | releldmqs | |
|
3 | 2 | elv | |
4 | 1 3 | syl | |
5 | disjlem19 | |
|
6 | 5 | elv | |
7 | 6 | ralrimivv | |
8 | 2r19.29 | |
|
9 | 8 | ex | |
10 | 7 9 | syl | |
11 | 4 10 | sylbid | |
12 | eqtr | |
|
13 | 12 | ancoms | |
14 | 13 | reximi | |
15 | 14 | reximi | |
16 | 11 15 | syl6 | |
17 | releldmqscoss | |
|
18 | 17 | elv | |
19 | 1 18 | syl | |
20 | 16 19 | sylibrd | |
21 | 20 | ssrdv | |