Metamath Proof Explorer


Theorem disjdmqsss

Description: Lemma for disjdmqseq via disjdmqs . (Contributed by Peter Mazsa, 16-Sep-2021)

Ref Expression
Assertion disjdmqsss DisjRdomR/RdomR/R

Proof

Step Hyp Ref Expression
1 disjrel DisjRRelR
2 releldmqs vVRelRvdomR/RudomRxuRv=uR
3 2 elv RelRvdomR/RudomRxuRv=uR
4 1 3 syl DisjRvdomR/RudomRxuRv=uR
5 disjlem19 xVDisjRudomRxuRuR=xR
6 5 elv DisjRudomRxuRuR=xR
7 6 ralrimivv DisjRudomRxuRuR=xR
8 2r19.29 udomRxuRuR=xRudomRxuRv=uRudomRxuRuR=xRv=uR
9 8 ex udomRxuRuR=xRudomRxuRv=uRudomRxuRuR=xRv=uR
10 7 9 syl DisjRudomRxuRv=uRudomRxuRuR=xRv=uR
11 4 10 sylbid DisjRvdomR/RudomRxuRuR=xRv=uR
12 eqtr v=uRuR=xRv=xR
13 12 ancoms uR=xRv=uRv=xR
14 13 reximi xuRuR=xRv=uRxuRv=xR
15 14 reximi udomRxuRuR=xRv=uRudomRxuRv=xR
16 11 15 syl6 DisjRvdomR/RudomRxuRv=xR
17 releldmqscoss vVRelRvdomR/RudomRxuRv=xR
18 17 elv RelRvdomR/RudomRxuRv=xR
19 1 18 syl DisjRvdomR/RudomRxuRv=xR
20 16 19 sylibrd DisjRvdomR/RvdomR/R
21 20 ssrdv DisjRdomR/RdomR/R