Metamath Proof Explorer


Theorem disjeq12dv

Description: Equality theorem for disjoint collection. Deduction version. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses disjeq12dv.1 φ A = B
disjeq12dv.2 φ C = D
Assertion disjeq12dv φ Disj x A C Disj x B D

Proof

Step Hyp Ref Expression
1 disjeq12dv.1 φ A = B
2 disjeq12dv.2 φ C = D
3 1 eleq2d φ x A x B
4 3 anbi1d φ x A t C x B t C
5 4 mobidv φ * x x A t C * x x B t C
6 df-rmo * x A t C * x x A t C
7 df-rmo * x B t C * x x B t C
8 5 6 7 3bitr4g φ * x A t C * x B t C
9 8 albidv φ t * x A t C t * x B t C
10 df-disj Disj x A C t * x A t C
11 df-disj Disj x B C t * x B t C
12 9 10 11 3bitr4g φ Disj x A C Disj x B C
13 2 adantr φ x B C = D
14 13 disjeq2dv φ Disj x B C Disj x B D
15 12 14 bitrd φ Disj x A C Disj x B D