Metamath Proof Explorer


Theorem disjtp2

Description: Two completely distinct unordered triples are disjoint. (Contributed by AV, 14-Nov-2021)

Ref Expression
Assertion disjtp2 ADBDCDAEBECEAFBFCFABCDEF=

Proof

Step Hyp Ref Expression
1 df-tp DEF=DEF
2 1 ineq2i ABCDEF=ABCDEF
3 df-tp ABC=ABC
4 3 ineq1i ABCDE=ABCDE
5 3simpa ADBDCDADBD
6 3simpa AEBECEAEBE
7 disjpr2 ADBDAEBEABDE=
8 5 6 7 syl2an ADBDCDAEBECEABDE=
9 8 3adant3 ADBDCDAEBECEAFBFCFABDE=
10 incom CDE=DEC
11 necom CDDC
12 11 biimpi CDDC
13 12 3ad2ant3 ADBDCDDC
14 necom CEEC
15 14 biimpi CEEC
16 15 3ad2ant3 AEBECEEC
17 disjprsn DCECDEC=
18 13 16 17 syl2an ADBDCDAEBECEDEC=
19 18 3adant3 ADBDCDAEBECEAFBFCFDEC=
20 10 19 eqtrid ADBDCDAEBECEAFBFCFCDE=
21 9 20 jca ADBDCDAEBECEAFBFCFABDE=CDE=
22 undisj1 ABDE=CDE=ABCDE=
23 21 22 sylib ADBDCDAEBECEAFBFCFABCDE=
24 4 23 eqtrid ADBDCDAEBECEAFBFCFABCDE=
25 disjtpsn AFBFCFABCF=
26 25 3ad2ant3 ADBDCDAEBECEAFBFCFABCF=
27 24 26 jca ADBDCDAEBECEAFBFCFABCDE=ABCF=
28 undisj2 ABCDE=ABCF=ABCDEF=
29 27 28 sylib ADBDCDAEBECEAFBFCFABCDEF=
30 2 29 eqtrid ADBDCDAEBECEAFBFCFABCDEF=