Metamath Proof Explorer


Theorem disjxp1

Description: The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypothesis disjxp1.1 φDisjxAB
Assertion disjxp1 φDisjxAB×C

Proof

Step Hyp Ref Expression
1 disjxp1.1 φDisjxAB
2 animorrl φyAzAy=zy=zy/xB×Cz/xB×C=
3 csbxp y/xB×C=y/xB×y/xC
4 csbxp z/xB×C=z/xB×z/xC
5 3 4 ineq12i y/xB×Cz/xB×C=y/xB×y/xCz/xB×z/xC
6 simpll φyAzAyzφ
7 simplrl φyAzAyzyA
8 simplrr φyAzAyzzA
9 6 7 8 jca31 φyAzAyzφyAzA
10 simpr φyAzAyzyz
11 10 neneqd φyAzAyz¬y=z
12 disjors DisjxAByAzAy=zy/xBz/xB=
13 1 12 sylib φyAzAy=zy/xBz/xB=
14 13 r19.21bi φyAzAy=zy/xBz/xB=
15 14 r19.21bi φyAzAy=zy/xBz/xB=
16 15 ord φyAzA¬y=zy/xBz/xB=
17 9 11 16 sylc φyAzAyzy/xBz/xB=
18 xpdisj1 y/xBz/xB=y/xB×y/xCz/xB×z/xC=
19 17 18 syl φyAzAyzy/xB×y/xCz/xB×z/xC=
20 5 19 eqtrid φyAzAyzy/xB×Cz/xB×C=
21 20 olcd φyAzAyzy=zy/xB×Cz/xB×C=
22 2 21 pm2.61dane φyAzAy=zy/xB×Cz/xB×C=
23 22 ralrimivva φyAzAy=zy/xB×Cz/xB×C=
24 disjors DisjxAB×CyAzAy=zy/xB×Cz/xB×C=
25 23 24 sylibr φDisjxAB×C