Metamath Proof Explorer


Theorem divfl0

Description: The floor of a fraction is 0 iff the denominator is less than the numerator. (Contributed by AV, 8-Jul-2021)

Ref Expression
Assertion divfl0 A0BA<BAB=0

Proof

Step Hyp Ref Expression
1 nn0nndivcl A0BAB
2 1 recnd A0BAB
3 addlid AB0+AB=AB
4 3 eqcomd ABAB=0+AB
5 2 4 syl A0BAB=0+AB
6 5 fveqeq2d A0BAB=00+AB=0
7 0z 0
8 flbi2 0AB0+AB=00ABAB<1
9 7 1 8 sylancr A0B0+AB=00ABAB<1
10 nn0ge0div A0B0AB
11 10 biantrurd A0BAB<10ABAB<1
12 nn0re A0A
13 nnrp BB+
14 divlt1lt AB+AB<1A<B
15 12 13 14 syl2an A0BAB<1A<B
16 11 15 bitr3d A0B0ABAB<1A<B
17 6 9 16 3bitrrd A0BA<BAB=0