Metamath Proof Explorer


Theorem divmuldiv

Description: Multiplication of two ratios. Theorem I.14 of Apostol p. 18. (Contributed by NM, 1-Aug-2004)

Ref Expression
Assertion divmuldiv A B C C 0 D D 0 A C B D = A B C D

Proof

Step Hyp Ref Expression
1 3anass A C C 0 A C C 0
2 3anass B D D 0 B D D 0
3 divcl A C C 0 A C
4 divcl B D D 0 B D
5 mulcl A C B D A C B D
6 3 4 5 syl2an A C C 0 B D D 0 A C B D
7 mulcl C D C D
8 7 ad2ant2r C C 0 D D 0 C D
9 8 3adantr1 C C 0 B D D 0 C D
10 9 3adantl1 A C C 0 B D D 0 C D
11 mulne0 C C 0 D D 0 C D 0
12 11 3adantr1 C C 0 B D D 0 C D 0
13 12 3adantl1 A C C 0 B D D 0 C D 0
14 divcan3 A C B D C D C D 0 C D A C B D C D = A C B D
15 6 10 13 14 syl3anc A C C 0 B D D 0 C D A C B D C D = A C B D
16 simp2 A C C 0 C
17 16 3 jca A C C 0 C A C
18 simp2 B D D 0 D
19 18 4 jca B D D 0 D B D
20 mul4 C A C D B D C A C D B D = C D A C B D
21 17 19 20 syl2an A C C 0 B D D 0 C A C D B D = C D A C B D
22 divcan2 A C C 0 C A C = A
23 divcan2 B D D 0 D B D = B
24 22 23 oveqan12d A C C 0 B D D 0 C A C D B D = A B
25 21 24 eqtr3d A C C 0 B D D 0 C D A C B D = A B
26 25 oveq1d A C C 0 B D D 0 C D A C B D C D = A B C D
27 15 26 eqtr3d A C C 0 B D D 0 A C B D = A B C D
28 1 2 27 syl2anbr A C C 0 B D D 0 A C B D = A B C D
29 28 an4s A B C C 0 D D 0 A C B D = A B C D