Metamath Proof Explorer


Theorem divmuldiv

Description: Multiplication of two ratios. Theorem I.14 of Apostol p. 18. (Contributed by NM, 1-Aug-2004)

Ref Expression
Assertion divmuldiv ABCC0DD0ACBD=ABCD

Proof

Step Hyp Ref Expression
1 3anass ACC0ACC0
2 3anass BDD0BDD0
3 divcl ACC0AC
4 divcl BDD0BD
5 mulcl ACBDACBD
6 3 4 5 syl2an ACC0BDD0ACBD
7 mulcl CDCD
8 7 ad2ant2r CC0DD0CD
9 8 3adantr1 CC0BDD0CD
10 9 3adantl1 ACC0BDD0CD
11 mulne0 CC0DD0CD0
12 11 3adantr1 CC0BDD0CD0
13 12 3adantl1 ACC0BDD0CD0
14 divcan3 ACBDCDCD0CDACBDCD=ACBD
15 6 10 13 14 syl3anc ACC0BDD0CDACBDCD=ACBD
16 simp2 ACC0C
17 16 3 jca ACC0CAC
18 simp2 BDD0D
19 18 4 jca BDD0DBD
20 mul4 CACDBDCACDBD=CDACBD
21 17 19 20 syl2an ACC0BDD0CACDBD=CDACBD
22 divcan2 ACC0CAC=A
23 divcan2 BDD0DBD=B
24 22 23 oveqan12d ACC0BDD0CACDBD=AB
25 21 24 eqtr3d ACC0BDD0CDACBD=AB
26 25 oveq1d ACC0BDD0CDACBDCD=ABCD
27 15 26 eqtr3d ACC0BDD0ACBD=ABCD
28 1 2 27 syl2anbr ACC0BDD0ACBD=ABCD
29 28 an4s ABCC0DD0ACBD=ABCD