Metamath Proof Explorer


Theorem divsqrtsum2

Description: A bound on the distance of the sum sum_ n <_ x ( 1 / sqrt n ) from its asymptotic value 2 sqrt x + L . (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses divsqrtsum.2 F=x+n=1x1n2x
divsqrsum2.1 φFL
Assertion divsqrtsum2 φA+FAL1A

Proof

Step Hyp Ref Expression
1 divsqrtsum.2 F=x+n=1x1n2x
2 divsqrsum2.1 φFL
3 1 divsqrtsumlem F:+FdomFLA+FAL1A
4 3 simp3i FLA+FAL1A
5 2 4 sylan φA+FAL1A