Metamath Proof Explorer


Theorem divsqrtsumlem

Description: Lemma for divsqrsum and divsqrtsum2 . (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypothesis divsqrtsum.2 F=x+n=1x1n2x
Assertion divsqrtsumlem F:+FdomFLA+FAL1A

Proof

Step Hyp Ref Expression
1 divsqrtsum.2 F=x+n=1x1n2x
2 ioorp 0+∞=+
3 2 eqcomi +=0+∞
4 nnuz =1
5 1zzd 1
6 0red 0
7 1re 1
8 0nn0 00
9 7 8 nn0addge2i 10+1
10 9 a1i 10+1
11 2re 2
12 rpsqrtcl x+x+
13 12 adantl x+x+
14 13 rpred x+x
15 remulcl 2x2x
16 11 14 15 sylancr x+2x
17 13 rprecred x+1x
18 nnrp xx+
19 18 17 sylan2 x1x
20 reelprrecn
21 20 a1i
22 13 rpcnd x+x
23 2rp 2+
24 rpmulcl 2+x+2x+
25 23 13 24 sylancr x+2x+
26 25 rpreccld x+12x+
27 dvsqrt dx+xdx=x+12x
28 27 a1i dx+xdx=x+12x
29 2cnd 2
30 21 22 26 28 29 dvmptcmul dx+2xdx=x+212x
31 2cnd x+2
32 1cnd x+1
33 25 rpcnne0d x+2x2x0
34 divass 212x2x0212x=212x
35 31 32 33 34 syl3anc x+212x=212x
36 13 rpcnne0d x+xx0
37 rpcnne0 2+220
38 23 37 mp1i x+220
39 divcan5 1xx0220212x=1x
40 32 36 38 39 syl3anc x+212x=1x
41 35 40 eqtr3d x+212x=1x
42 41 mpteq2dva x+212x=x+1x
43 30 42 eqtrd dx+2xdx=x+1x
44 fveq2 x=nx=n
45 44 oveq2d x=n1x=1n
46 simp3r x+n+0xxnxn
47 simp2l x+n+0xxnx+
48 47 rprege0d x+n+0xxnx0x
49 simp2r x+n+0xxnn+
50 49 rprege0d x+n+0xxnn0n
51 sqrtle x0xn0nxnxn
52 48 50 51 syl2anc x+n+0xxnxnxn
53 46 52 mpbid x+n+0xxnxn
54 47 rpsqrtcld x+n+0xxnx+
55 49 rpsqrtcld x+n+0xxnn+
56 54 55 lerecd x+n+0xxnxn1n1x
57 53 56 mpbid x+n+0xxn1n1x
58 sqrtlim x+1x0
59 58 a1i x+1x0
60 fveq2 x=Ax=A
61 60 oveq2d x=A1x=1A
62 3 4 5 6 10 6 16 17 19 43 45 57 1 59 61 dvfsumrlim3 F:+FdomFLA+0AFAL1A
63 62 simp1d F:+
64 63 mptru F:+
65 62 simp2d Fdom
66 65 mptru Fdom
67 rpge0 A+0A
68 67 adantl FLA+0A
69 62 simp3d FLA+0AFAL1A
70 69 mptru FLA+0AFAL1A
71 68 70 mpd3an3 FLA+FAL1A
72 64 66 71 3pm3.2i F:+FdomFLA+FAL1A