| Step |
Hyp |
Ref |
Expression |
| 1 |
|
divsqrtsum.2 |
|
| 2 |
|
ioorp |
|
| 3 |
2
|
eqcomi |
|
| 4 |
|
nnuz |
|
| 5 |
|
1zzd |
|
| 6 |
|
0red |
|
| 7 |
|
1re |
|
| 8 |
|
0nn0 |
|
| 9 |
7 8
|
nn0addge2i |
|
| 10 |
9
|
a1i |
|
| 11 |
|
2re |
|
| 12 |
|
rpsqrtcl |
|
| 13 |
12
|
adantl |
|
| 14 |
13
|
rpred |
|
| 15 |
|
remulcl |
|
| 16 |
11 14 15
|
sylancr |
|
| 17 |
13
|
rprecred |
|
| 18 |
|
nnrp |
|
| 19 |
18 17
|
sylan2 |
|
| 20 |
|
reelprrecn |
|
| 21 |
20
|
a1i |
|
| 22 |
13
|
rpcnd |
|
| 23 |
|
2rp |
|
| 24 |
|
rpmulcl |
|
| 25 |
23 13 24
|
sylancr |
|
| 26 |
25
|
rpreccld |
|
| 27 |
|
dvsqrt |
|
| 28 |
27
|
a1i |
|
| 29 |
|
2cnd |
|
| 30 |
21 22 26 28 29
|
dvmptcmul |
|
| 31 |
|
2cnd |
|
| 32 |
|
1cnd |
|
| 33 |
25
|
rpcnne0d |
|
| 34 |
|
divass |
|
| 35 |
31 32 33 34
|
syl3anc |
|
| 36 |
13
|
rpcnne0d |
|
| 37 |
|
rpcnne0 |
|
| 38 |
23 37
|
mp1i |
|
| 39 |
|
divcan5 |
|
| 40 |
32 36 38 39
|
syl3anc |
|
| 41 |
35 40
|
eqtr3d |
|
| 42 |
41
|
mpteq2dva |
|
| 43 |
30 42
|
eqtrd |
|
| 44 |
|
fveq2 |
|
| 45 |
44
|
oveq2d |
|
| 46 |
|
simp3r |
|
| 47 |
|
simp2l |
|
| 48 |
47
|
rprege0d |
|
| 49 |
|
simp2r |
|
| 50 |
49
|
rprege0d |
|
| 51 |
|
sqrtle |
|
| 52 |
48 50 51
|
syl2anc |
|
| 53 |
46 52
|
mpbid |
|
| 54 |
47
|
rpsqrtcld |
|
| 55 |
49
|
rpsqrtcld |
|
| 56 |
54 55
|
lerecd |
|
| 57 |
53 56
|
mpbid |
|
| 58 |
|
sqrtlim |
|
| 59 |
58
|
a1i |
|
| 60 |
|
fveq2 |
|
| 61 |
60
|
oveq2d |
|
| 62 |
3 4 5 6 10 6 16 17 19 43 45 57 1 59 61
|
dvfsumrlim3 |
|
| 63 |
62
|
simp1d |
|
| 64 |
63
|
mptru |
|
| 65 |
62
|
simp2d |
|
| 66 |
65
|
mptru |
|
| 67 |
|
rpge0 |
|
| 68 |
67
|
adantl |
|
| 69 |
62
|
simp3d |
|
| 70 |
69
|
mptru |
|
| 71 |
68 70
|
mpd3an3 |
|
| 72 |
64 66 71
|
3pm3.2i |
|