Description: Lemma for divsqrsum and divsqrtsum2 . (Contributed by Mario Carneiro, 18-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | divsqrtsum.2 | |
|
Assertion | divsqrtsumlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divsqrtsum.2 | |
|
2 | ioorp | |
|
3 | 2 | eqcomi | |
4 | nnuz | |
|
5 | 1zzd | |
|
6 | 0red | |
|
7 | 1re | |
|
8 | 0nn0 | |
|
9 | 7 8 | nn0addge2i | |
10 | 9 | a1i | |
11 | 2re | |
|
12 | rpsqrtcl | |
|
13 | 12 | adantl | |
14 | 13 | rpred | |
15 | remulcl | |
|
16 | 11 14 15 | sylancr | |
17 | 13 | rprecred | |
18 | nnrp | |
|
19 | 18 17 | sylan2 | |
20 | reelprrecn | |
|
21 | 20 | a1i | |
22 | 13 | rpcnd | |
23 | 2rp | |
|
24 | rpmulcl | |
|
25 | 23 13 24 | sylancr | |
26 | 25 | rpreccld | |
27 | dvsqrt | |
|
28 | 27 | a1i | |
29 | 2cnd | |
|
30 | 21 22 26 28 29 | dvmptcmul | |
31 | 2cnd | |
|
32 | 1cnd | |
|
33 | 25 | rpcnne0d | |
34 | divass | |
|
35 | 31 32 33 34 | syl3anc | |
36 | 13 | rpcnne0d | |
37 | rpcnne0 | |
|
38 | 23 37 | mp1i | |
39 | divcan5 | |
|
40 | 32 36 38 39 | syl3anc | |
41 | 35 40 | eqtr3d | |
42 | 41 | mpteq2dva | |
43 | 30 42 | eqtrd | |
44 | fveq2 | |
|
45 | 44 | oveq2d | |
46 | simp3r | |
|
47 | simp2l | |
|
48 | 47 | rprege0d | |
49 | simp2r | |
|
50 | 49 | rprege0d | |
51 | sqrtle | |
|
52 | 48 50 51 | syl2anc | |
53 | 46 52 | mpbid | |
54 | 47 | rpsqrtcld | |
55 | 49 | rpsqrtcld | |
56 | 54 55 | lerecd | |
57 | 53 56 | mpbid | |
58 | sqrtlim | |
|
59 | 58 | a1i | |
60 | fveq2 | |
|
61 | 60 | oveq2d | |
62 | 3 4 5 6 10 6 16 17 19 43 45 57 1 59 61 | dvfsumrlim3 | |
63 | 62 | simp1d | |
64 | 63 | mptru | |
65 | 62 | simp2d | |
66 | 65 | mptru | |
67 | rpge0 | |
|
68 | 67 | adantl | |
69 | 62 | simp3d | |
70 | 69 | mptru | |
71 | 68 70 | mpd3an3 | |
72 | 64 66 71 | 3pm3.2i | |