Metamath Proof Explorer


Theorem divsqrsum

Description: The sum sum_ n <_ x ( 1 / sqrt n ) is asymptotic to 2 sqrt x + L with a finite limit L . (In fact, this limit is zeta ( 1 / 2 ) ~-u 1 . 4 6 ... .) (Contributed by Mario Carneiro, 9-May-2016)

Ref Expression
Hypothesis divsqrtsum.2 F=x+n=1x1n2x
Assertion divsqrsum Fdom

Proof

Step Hyp Ref Expression
1 divsqrtsum.2 F=x+n=1x1n2x
2 1 divsqrtsumlem F:+FdomF11+F1111
3 2 simp2i Fdom