Metamath Proof Explorer


Theorem dvsqrt

Description: The derivative of the real square root function. (Contributed by Mario Carneiro, 1-May-2016)

Ref Expression
Assertion dvsqrt dx+xdx=x+12x

Proof

Step Hyp Ref Expression
1 halfcn 12
2 dvcxp1 12dx+x12dx=x+12x121
3 1 2 ax-mp dx+x12dx=x+12x121
4 rpcn x+x
5 cxpsqrt xx12=x
6 4 5 syl x+x12=x
7 6 mpteq2ia x+x12=x+x
8 7 oveq2i dx+x12dx=dx+xdx
9 1p0e1 1+0=1
10 ax-1cn 1
11 2halves 112+12=1
12 10 11 ax-mp 12+12=1
13 9 12 eqtr4i 1+0=12+12
14 0cn 0
15 addsubeq4 1012121+0=12+12121=012
16 10 14 1 1 15 mp4an 1+0=12+12121=012
17 13 16 mpbi 121=012
18 df-neg 12=012
19 17 18 eqtr4i 121=12
20 19 oveq2i x121=x12
21 rpne0 x+x0
22 1 a1i x+12
23 4 21 22 cxpnegd x+x12=1x12
24 20 23 eqtrid x+x121=1x12
25 6 oveq2d x+1x12=1x
26 24 25 eqtrd x+x121=1x
27 26 oveq2d x+12x121=121x
28 10 a1i x+1
29 2cnne0 220
30 29 a1i x+220
31 rpsqrtcl x+x+
32 31 rpcnne0d x+xx0
33 divmuldiv 11220xx0121x=112x
34 28 28 30 32 33 syl22anc x+121x=112x
35 1t1e1 11=1
36 35 oveq1i 112x=12x
37 34 36 eqtrdi x+121x=12x
38 27 37 eqtrd x+12x121=12x
39 38 mpteq2ia x+12x121=x+12x
40 3 8 39 3eqtr3i dx+xdx=x+12x