Description: The derivative of the real square root function. (Contributed by Mario Carneiro, 1-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | dvsqrt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | halfcn | |
|
2 | dvcxp1 | |
|
3 | 1 2 | ax-mp | |
4 | rpcn | |
|
5 | cxpsqrt | |
|
6 | 4 5 | syl | |
7 | 6 | mpteq2ia | |
8 | 7 | oveq2i | |
9 | 1p0e1 | |
|
10 | ax-1cn | |
|
11 | 2halves | |
|
12 | 10 11 | ax-mp | |
13 | 9 12 | eqtr4i | |
14 | 0cn | |
|
15 | addsubeq4 | |
|
16 | 10 14 1 1 15 | mp4an | |
17 | 13 16 | mpbi | |
18 | df-neg | |
|
19 | 17 18 | eqtr4i | |
20 | 19 | oveq2i | |
21 | rpne0 | |
|
22 | 1 | a1i | |
23 | 4 21 22 | cxpnegd | |
24 | 20 23 | eqtrid | |
25 | 6 | oveq2d | |
26 | 24 25 | eqtrd | |
27 | 26 | oveq2d | |
28 | 10 | a1i | |
29 | 2cnne0 | |
|
30 | 29 | a1i | |
31 | rpsqrtcl | |
|
32 | 31 | rpcnne0d | |
33 | divmuldiv | |
|
34 | 28 28 30 32 33 | syl22anc | |
35 | 1t1e1 | |
|
36 | 35 | oveq1i | |
37 | 34 36 | eqtrdi | |
38 | 27 37 | eqtrd | |
39 | 38 | mpteq2ia | |
40 | 3 8 39 | 3eqtr3i | |