| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reelprrecn |
|
| 2 |
1
|
a1i |
|
| 3 |
|
relogcl |
|
| 4 |
3
|
adantl |
|
| 5 |
|
rpreccl |
|
| 6 |
5
|
adantl |
|
| 7 |
|
recn |
|
| 8 |
|
mulcl |
|
| 9 |
|
efcl |
|
| 10 |
8 9
|
syl |
|
| 11 |
7 10
|
sylan2 |
|
| 12 |
|
ovexd |
|
| 13 |
|
relogf1o |
|
| 14 |
|
f1of |
|
| 15 |
13 14
|
mp1i |
|
| 16 |
15
|
feqmptd |
|
| 17 |
|
fvres |
|
| 18 |
17
|
mpteq2ia |
|
| 19 |
16 18
|
eqtrdi |
|
| 20 |
19
|
oveq2d |
|
| 21 |
|
dvrelog |
|
| 22 |
20 21
|
eqtr3di |
|
| 23 |
|
eqid |
|
| 24 |
23
|
cnfldtopon |
|
| 25 |
|
toponmax |
|
| 26 |
24 25
|
mp1i |
|
| 27 |
|
ax-resscn |
|
| 28 |
27
|
a1i |
|
| 29 |
|
dfss2 |
|
| 30 |
28 29
|
sylib |
|
| 31 |
|
ovexd |
|
| 32 |
|
cnelprrecn |
|
| 33 |
32
|
a1i |
|
| 34 |
|
simpl |
|
| 35 |
|
efcl |
|
| 36 |
35
|
adantl |
|
| 37 |
|
simpr |
|
| 38 |
|
1cnd |
|
| 39 |
33
|
dvmptid |
|
| 40 |
|
id |
|
| 41 |
33 37 38 39 40
|
dvmptcmul |
|
| 42 |
|
mulrid |
|
| 43 |
42
|
mpteq2dv |
|
| 44 |
41 43
|
eqtrd |
|
| 45 |
|
dvef |
|
| 46 |
|
eff |
|
| 47 |
46
|
a1i |
|
| 48 |
47
|
feqmptd |
|
| 49 |
48
|
eqcomd |
|
| 50 |
49
|
oveq2d |
|
| 51 |
45 50 49
|
3eqtr4a |
|
| 52 |
|
fveq2 |
|
| 53 |
33 33 8 34 36 36 44 51 52 52
|
dvmptco |
|
| 54 |
23 2 26 30 10 31 53
|
dvmptres3 |
|
| 55 |
|
oveq2 |
|
| 56 |
55
|
fveq2d |
|
| 57 |
56
|
oveq1d |
|
| 58 |
2 2 4 6 11 12 22 54 56 57
|
dvmptco |
|
| 59 |
|
rpcn |
|
| 60 |
59
|
adantl |
|
| 61 |
|
rpne0 |
|
| 62 |
61
|
adantl |
|
| 63 |
|
simpl |
|
| 64 |
60 62 63
|
cxpefd |
|
| 65 |
64
|
mpteq2dva |
|
| 66 |
65
|
oveq2d |
|
| 67 |
|
1cnd |
|
| 68 |
60 62 63 67
|
cxpsubd |
|
| 69 |
60
|
cxp1d |
|
| 70 |
69
|
oveq2d |
|
| 71 |
60 63
|
cxpcld |
|
| 72 |
71 60 62
|
divrecd |
|
| 73 |
68 70 72
|
3eqtrd |
|
| 74 |
73
|
oveq2d |
|
| 75 |
6
|
rpcnd |
|
| 76 |
63 71 75
|
mul12d |
|
| 77 |
71 63 75
|
mulassd |
|
| 78 |
76 77
|
eqtr4d |
|
| 79 |
64
|
oveq1d |
|
| 80 |
79
|
oveq1d |
|
| 81 |
74 78 80
|
3eqtrd |
|
| 82 |
81
|
mpteq2dva |
|
| 83 |
58 66 82
|
3eqtr4d |
|