| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnelprrecn |
|
| 2 |
1
|
a1i |
|
| 3 |
|
simpr |
|
| 4 |
|
relogcl |
|
| 5 |
4
|
adantr |
|
| 6 |
5
|
recnd |
|
| 7 |
3 6
|
mulcld |
|
| 8 |
|
efcl |
|
| 9 |
8
|
adantl |
|
| 10 |
3 6
|
mulcomd |
|
| 11 |
10
|
mpteq2dva |
|
| 12 |
11
|
oveq2d |
|
| 13 |
|
1cnd |
|
| 14 |
2
|
dvmptid |
|
| 15 |
4
|
recnd |
|
| 16 |
2 3 13 14 15
|
dvmptcmul |
|
| 17 |
6
|
mulridd |
|
| 18 |
17
|
mpteq2dva |
|
| 19 |
12 16 18
|
3eqtrd |
|
| 20 |
|
dvef |
|
| 21 |
|
eff |
|
| 22 |
21
|
a1i |
|
| 23 |
22
|
feqmptd |
|
| 24 |
23
|
eqcomd |
|
| 25 |
24
|
oveq2d |
|
| 26 |
20 25 24
|
3eqtr4a |
|
| 27 |
|
fveq2 |
|
| 28 |
2 2 7 5 9 9 19 26 27 27
|
dvmptco |
|
| 29 |
|
rpcn |
|
| 30 |
29
|
adantr |
|
| 31 |
|
rpne0 |
|
| 32 |
31
|
adantr |
|
| 33 |
30 32 3
|
cxpefd |
|
| 34 |
33
|
mpteq2dva |
|
| 35 |
34
|
oveq2d |
|
| 36 |
30 3
|
cxpcld |
|
| 37 |
6 36
|
mulcomd |
|
| 38 |
33
|
oveq1d |
|
| 39 |
37 38
|
eqtrd |
|
| 40 |
39
|
mpteq2dva |
|
| 41 |
28 35 40
|
3eqtr4d |
|