Metamath Proof Explorer


Theorem dvcxp2

Description: The derivative of a complex power with respect to the second argument. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Assertion dvcxp2 A+dxAxdx=xlogAAx

Proof

Step Hyp Ref Expression
1 cnelprrecn
2 1 a1i A+
3 simpr A+xx
4 relogcl A+logA
5 4 adantr A+xlogA
6 5 recnd A+xlogA
7 3 6 mulcld A+xxlogA
8 efcl yey
9 8 adantl A+yey
10 3 6 mulcomd A+xxlogA=logAx
11 10 mpteq2dva A+xxlogA=xlogAx
12 11 oveq2d A+dxxlogAdx=dxlogAxdx
13 1cnd A+x1
14 2 dvmptid A+dxxdx=x1
15 4 recnd A+logA
16 2 3 13 14 15 dvmptcmul A+dxlogAxdx=xlogA1
17 6 mulridd A+xlogA1=logA
18 17 mpteq2dva A+xlogA1=xlogA
19 12 16 18 3eqtrd A+dxxlogAdx=xlogA
20 dvef Dexp=exp
21 eff exp:
22 21 a1i A+exp:
23 22 feqmptd A+exp=yey
24 23 eqcomd A+yey=exp
25 24 oveq2d A+dyeydy=Dexp
26 20 25 24 3eqtr4a A+dyeydy=yey
27 fveq2 y=xlogAey=exlogA
28 2 2 7 5 9 9 19 26 27 27 dvmptco A+dxexlogAdx=xexlogAlogA
29 rpcn A+A
30 29 adantr A+xA
31 rpne0 A+A0
32 31 adantr A+xA0
33 30 32 3 cxpefd A+xAx=exlogA
34 33 mpteq2dva A+xAx=xexlogA
35 34 oveq2d A+dxAxdx=dxexlogAdx
36 30 3 cxpcld A+xAx
37 6 36 mulcomd A+xlogAAx=AxlogA
38 33 oveq1d A+xAxlogA=exlogAlogA
39 37 38 eqtrd A+xlogAAx=exlogAlogA
40 39 mpteq2dva A+xlogAAx=xexlogAlogA
41 28 35 40 3eqtr4d A+dxAxdx=xlogAAx