Metamath Proof Explorer


Theorem dvcxp2

Description: The derivative of a complex power with respect to the second argument. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Assertion dvcxp2 A + dx A x d x = x log A A x

Proof

Step Hyp Ref Expression
1 cnelprrecn
2 1 a1i A +
3 simpr A + x x
4 relogcl A + log A
5 4 adantr A + x log A
6 5 recnd A + x log A
7 3 6 mulcld A + x x log A
8 efcl y e y
9 8 adantl A + y e y
10 3 6 mulcomd A + x x log A = log A x
11 10 mpteq2dva A + x x log A = x log A x
12 11 oveq2d A + dx x log A d x = dx log A x d x
13 1cnd A + x 1
14 2 dvmptid A + dx x d x = x 1
15 4 recnd A + log A
16 2 3 13 14 15 dvmptcmul A + dx log A x d x = x log A 1
17 6 mulid1d A + x log A 1 = log A
18 17 mpteq2dva A + x log A 1 = x log A
19 12 16 18 3eqtrd A + dx x log A d x = x log A
20 dvef D exp = exp
21 eff exp :
22 21 a1i A + exp :
23 22 feqmptd A + exp = y e y
24 23 eqcomd A + y e y = exp
25 24 oveq2d A + dy e y d y = D exp
26 20 25 24 3eqtr4a A + dy e y d y = y e y
27 fveq2 y = x log A e y = e x log A
28 2 2 7 5 9 9 19 26 27 27 dvmptco A + dx e x log A d x = x e x log A log A
29 rpcn A + A
30 29 adantr A + x A
31 rpne0 A + A 0
32 31 adantr A + x A 0
33 30 32 3 cxpefd A + x A x = e x log A
34 33 mpteq2dva A + x A x = x e x log A
35 34 oveq2d A + dx A x d x = dx e x log A d x
36 30 3 cxpcld A + x A x
37 6 36 mulcomd A + x log A A x = A x log A
38 33 oveq1d A + x A x log A = e x log A log A
39 37 38 eqtrd A + x log A A x = e x log A log A
40 39 mpteq2dva A + x log A A x = x e x log A log A
41 28 35 40 3eqtr4d A + dx A x d x = x log A A x