Description: The derivative of a complex power with respect to the second argument. (Contributed by Mario Carneiro, 24-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | dvcxp2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnelprrecn | |
|
2 | 1 | a1i | |
3 | simpr | |
|
4 | relogcl | |
|
5 | 4 | adantr | |
6 | 5 | recnd | |
7 | 3 6 | mulcld | |
8 | efcl | |
|
9 | 8 | adantl | |
10 | 3 6 | mulcomd | |
11 | 10 | mpteq2dva | |
12 | 11 | oveq2d | |
13 | 1cnd | |
|
14 | 2 | dvmptid | |
15 | 4 | recnd | |
16 | 2 3 13 14 15 | dvmptcmul | |
17 | 6 | mulridd | |
18 | 17 | mpteq2dva | |
19 | 12 16 18 | 3eqtrd | |
20 | dvef | |
|
21 | eff | |
|
22 | 21 | a1i | |
23 | 22 | feqmptd | |
24 | 23 | eqcomd | |
25 | 24 | oveq2d | |
26 | 20 25 24 | 3eqtr4a | |
27 | fveq2 | |
|
28 | 2 2 7 5 9 9 19 26 27 27 | dvmptco | |
29 | rpcn | |
|
30 | 29 | adantr | |
31 | rpne0 | |
|
32 | 31 | adantr | |
33 | 30 32 3 | cxpefd | |
34 | 33 | mpteq2dva | |
35 | 34 | oveq2d | |
36 | 30 3 | cxpcld | |
37 | 6 36 | mulcomd | |
38 | 33 | oveq1d | |
39 | 37 38 | eqtrd | |
40 | 39 | mpteq2dva | |
41 | 28 35 40 | 3eqtr4d | |