Step |
Hyp |
Ref |
Expression |
1 |
|
reelprrecn |
|- RR e. { RR , CC } |
2 |
1
|
a1i |
|- ( A e. CC -> RR e. { RR , CC } ) |
3 |
|
relogcl |
|- ( x e. RR+ -> ( log ` x ) e. RR ) |
4 |
3
|
adantl |
|- ( ( A e. CC /\ x e. RR+ ) -> ( log ` x ) e. RR ) |
5 |
|
rpreccl |
|- ( x e. RR+ -> ( 1 / x ) e. RR+ ) |
6 |
5
|
adantl |
|- ( ( A e. CC /\ x e. RR+ ) -> ( 1 / x ) e. RR+ ) |
7 |
|
recn |
|- ( y e. RR -> y e. CC ) |
8 |
|
mulcl |
|- ( ( A e. CC /\ y e. CC ) -> ( A x. y ) e. CC ) |
9 |
|
efcl |
|- ( ( A x. y ) e. CC -> ( exp ` ( A x. y ) ) e. CC ) |
10 |
8 9
|
syl |
|- ( ( A e. CC /\ y e. CC ) -> ( exp ` ( A x. y ) ) e. CC ) |
11 |
7 10
|
sylan2 |
|- ( ( A e. CC /\ y e. RR ) -> ( exp ` ( A x. y ) ) e. CC ) |
12 |
|
ovexd |
|- ( ( A e. CC /\ y e. RR ) -> ( ( exp ` ( A x. y ) ) x. A ) e. _V ) |
13 |
|
relogf1o |
|- ( log |` RR+ ) : RR+ -1-1-onto-> RR |
14 |
|
f1of |
|- ( ( log |` RR+ ) : RR+ -1-1-onto-> RR -> ( log |` RR+ ) : RR+ --> RR ) |
15 |
13 14
|
mp1i |
|- ( A e. CC -> ( log |` RR+ ) : RR+ --> RR ) |
16 |
15
|
feqmptd |
|- ( A e. CC -> ( log |` RR+ ) = ( x e. RR+ |-> ( ( log |` RR+ ) ` x ) ) ) |
17 |
|
fvres |
|- ( x e. RR+ -> ( ( log |` RR+ ) ` x ) = ( log ` x ) ) |
18 |
17
|
mpteq2ia |
|- ( x e. RR+ |-> ( ( log |` RR+ ) ` x ) ) = ( x e. RR+ |-> ( log ` x ) ) |
19 |
16 18
|
eqtrdi |
|- ( A e. CC -> ( log |` RR+ ) = ( x e. RR+ |-> ( log ` x ) ) ) |
20 |
19
|
oveq2d |
|- ( A e. CC -> ( RR _D ( log |` RR+ ) ) = ( RR _D ( x e. RR+ |-> ( log ` x ) ) ) ) |
21 |
|
dvrelog |
|- ( RR _D ( log |` RR+ ) ) = ( x e. RR+ |-> ( 1 / x ) ) |
22 |
20 21
|
eqtr3di |
|- ( A e. CC -> ( RR _D ( x e. RR+ |-> ( log ` x ) ) ) = ( x e. RR+ |-> ( 1 / x ) ) ) |
23 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
24 |
23
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
25 |
|
toponmax |
|- ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) -> CC e. ( TopOpen ` CCfld ) ) |
26 |
24 25
|
mp1i |
|- ( A e. CC -> CC e. ( TopOpen ` CCfld ) ) |
27 |
|
ax-resscn |
|- RR C_ CC |
28 |
27
|
a1i |
|- ( A e. CC -> RR C_ CC ) |
29 |
|
df-ss |
|- ( RR C_ CC <-> ( RR i^i CC ) = RR ) |
30 |
28 29
|
sylib |
|- ( A e. CC -> ( RR i^i CC ) = RR ) |
31 |
|
ovexd |
|- ( ( A e. CC /\ y e. CC ) -> ( ( exp ` ( A x. y ) ) x. A ) e. _V ) |
32 |
|
cnelprrecn |
|- CC e. { RR , CC } |
33 |
32
|
a1i |
|- ( A e. CC -> CC e. { RR , CC } ) |
34 |
|
simpl |
|- ( ( A e. CC /\ y e. CC ) -> A e. CC ) |
35 |
|
efcl |
|- ( x e. CC -> ( exp ` x ) e. CC ) |
36 |
35
|
adantl |
|- ( ( A e. CC /\ x e. CC ) -> ( exp ` x ) e. CC ) |
37 |
|
simpr |
|- ( ( A e. CC /\ y e. CC ) -> y e. CC ) |
38 |
|
1cnd |
|- ( ( A e. CC /\ y e. CC ) -> 1 e. CC ) |
39 |
33
|
dvmptid |
|- ( A e. CC -> ( CC _D ( y e. CC |-> y ) ) = ( y e. CC |-> 1 ) ) |
40 |
|
id |
|- ( A e. CC -> A e. CC ) |
41 |
33 37 38 39 40
|
dvmptcmul |
|- ( A e. CC -> ( CC _D ( y e. CC |-> ( A x. y ) ) ) = ( y e. CC |-> ( A x. 1 ) ) ) |
42 |
|
mulid1 |
|- ( A e. CC -> ( A x. 1 ) = A ) |
43 |
42
|
mpteq2dv |
|- ( A e. CC -> ( y e. CC |-> ( A x. 1 ) ) = ( y e. CC |-> A ) ) |
44 |
41 43
|
eqtrd |
|- ( A e. CC -> ( CC _D ( y e. CC |-> ( A x. y ) ) ) = ( y e. CC |-> A ) ) |
45 |
|
dvef |
|- ( CC _D exp ) = exp |
46 |
|
eff |
|- exp : CC --> CC |
47 |
46
|
a1i |
|- ( A e. CC -> exp : CC --> CC ) |
48 |
47
|
feqmptd |
|- ( A e. CC -> exp = ( x e. CC |-> ( exp ` x ) ) ) |
49 |
48
|
eqcomd |
|- ( A e. CC -> ( x e. CC |-> ( exp ` x ) ) = exp ) |
50 |
49
|
oveq2d |
|- ( A e. CC -> ( CC _D ( x e. CC |-> ( exp ` x ) ) ) = ( CC _D exp ) ) |
51 |
45 50 49
|
3eqtr4a |
|- ( A e. CC -> ( CC _D ( x e. CC |-> ( exp ` x ) ) ) = ( x e. CC |-> ( exp ` x ) ) ) |
52 |
|
fveq2 |
|- ( x = ( A x. y ) -> ( exp ` x ) = ( exp ` ( A x. y ) ) ) |
53 |
33 33 8 34 36 36 44 51 52 52
|
dvmptco |
|- ( A e. CC -> ( CC _D ( y e. CC |-> ( exp ` ( A x. y ) ) ) ) = ( y e. CC |-> ( ( exp ` ( A x. y ) ) x. A ) ) ) |
54 |
23 2 26 30 10 31 53
|
dvmptres3 |
|- ( A e. CC -> ( RR _D ( y e. RR |-> ( exp ` ( A x. y ) ) ) ) = ( y e. RR |-> ( ( exp ` ( A x. y ) ) x. A ) ) ) |
55 |
|
oveq2 |
|- ( y = ( log ` x ) -> ( A x. y ) = ( A x. ( log ` x ) ) ) |
56 |
55
|
fveq2d |
|- ( y = ( log ` x ) -> ( exp ` ( A x. y ) ) = ( exp ` ( A x. ( log ` x ) ) ) ) |
57 |
56
|
oveq1d |
|- ( y = ( log ` x ) -> ( ( exp ` ( A x. y ) ) x. A ) = ( ( exp ` ( A x. ( log ` x ) ) ) x. A ) ) |
58 |
2 2 4 6 11 12 22 54 56 57
|
dvmptco |
|- ( A e. CC -> ( RR _D ( x e. RR+ |-> ( exp ` ( A x. ( log ` x ) ) ) ) ) = ( x e. RR+ |-> ( ( ( exp ` ( A x. ( log ` x ) ) ) x. A ) x. ( 1 / x ) ) ) ) |
59 |
|
rpcn |
|- ( x e. RR+ -> x e. CC ) |
60 |
59
|
adantl |
|- ( ( A e. CC /\ x e. RR+ ) -> x e. CC ) |
61 |
|
rpne0 |
|- ( x e. RR+ -> x =/= 0 ) |
62 |
61
|
adantl |
|- ( ( A e. CC /\ x e. RR+ ) -> x =/= 0 ) |
63 |
|
simpl |
|- ( ( A e. CC /\ x e. RR+ ) -> A e. CC ) |
64 |
60 62 63
|
cxpefd |
|- ( ( A e. CC /\ x e. RR+ ) -> ( x ^c A ) = ( exp ` ( A x. ( log ` x ) ) ) ) |
65 |
64
|
mpteq2dva |
|- ( A e. CC -> ( x e. RR+ |-> ( x ^c A ) ) = ( x e. RR+ |-> ( exp ` ( A x. ( log ` x ) ) ) ) ) |
66 |
65
|
oveq2d |
|- ( A e. CC -> ( RR _D ( x e. RR+ |-> ( x ^c A ) ) ) = ( RR _D ( x e. RR+ |-> ( exp ` ( A x. ( log ` x ) ) ) ) ) ) |
67 |
|
1cnd |
|- ( ( A e. CC /\ x e. RR+ ) -> 1 e. CC ) |
68 |
60 62 63 67
|
cxpsubd |
|- ( ( A e. CC /\ x e. RR+ ) -> ( x ^c ( A - 1 ) ) = ( ( x ^c A ) / ( x ^c 1 ) ) ) |
69 |
60
|
cxp1d |
|- ( ( A e. CC /\ x e. RR+ ) -> ( x ^c 1 ) = x ) |
70 |
69
|
oveq2d |
|- ( ( A e. CC /\ x e. RR+ ) -> ( ( x ^c A ) / ( x ^c 1 ) ) = ( ( x ^c A ) / x ) ) |
71 |
60 63
|
cxpcld |
|- ( ( A e. CC /\ x e. RR+ ) -> ( x ^c A ) e. CC ) |
72 |
71 60 62
|
divrecd |
|- ( ( A e. CC /\ x e. RR+ ) -> ( ( x ^c A ) / x ) = ( ( x ^c A ) x. ( 1 / x ) ) ) |
73 |
68 70 72
|
3eqtrd |
|- ( ( A e. CC /\ x e. RR+ ) -> ( x ^c ( A - 1 ) ) = ( ( x ^c A ) x. ( 1 / x ) ) ) |
74 |
73
|
oveq2d |
|- ( ( A e. CC /\ x e. RR+ ) -> ( A x. ( x ^c ( A - 1 ) ) ) = ( A x. ( ( x ^c A ) x. ( 1 / x ) ) ) ) |
75 |
6
|
rpcnd |
|- ( ( A e. CC /\ x e. RR+ ) -> ( 1 / x ) e. CC ) |
76 |
63 71 75
|
mul12d |
|- ( ( A e. CC /\ x e. RR+ ) -> ( A x. ( ( x ^c A ) x. ( 1 / x ) ) ) = ( ( x ^c A ) x. ( A x. ( 1 / x ) ) ) ) |
77 |
71 63 75
|
mulassd |
|- ( ( A e. CC /\ x e. RR+ ) -> ( ( ( x ^c A ) x. A ) x. ( 1 / x ) ) = ( ( x ^c A ) x. ( A x. ( 1 / x ) ) ) ) |
78 |
76 77
|
eqtr4d |
|- ( ( A e. CC /\ x e. RR+ ) -> ( A x. ( ( x ^c A ) x. ( 1 / x ) ) ) = ( ( ( x ^c A ) x. A ) x. ( 1 / x ) ) ) |
79 |
64
|
oveq1d |
|- ( ( A e. CC /\ x e. RR+ ) -> ( ( x ^c A ) x. A ) = ( ( exp ` ( A x. ( log ` x ) ) ) x. A ) ) |
80 |
79
|
oveq1d |
|- ( ( A e. CC /\ x e. RR+ ) -> ( ( ( x ^c A ) x. A ) x. ( 1 / x ) ) = ( ( ( exp ` ( A x. ( log ` x ) ) ) x. A ) x. ( 1 / x ) ) ) |
81 |
74 78 80
|
3eqtrd |
|- ( ( A e. CC /\ x e. RR+ ) -> ( A x. ( x ^c ( A - 1 ) ) ) = ( ( ( exp ` ( A x. ( log ` x ) ) ) x. A ) x. ( 1 / x ) ) ) |
82 |
81
|
mpteq2dva |
|- ( A e. CC -> ( x e. RR+ |-> ( A x. ( x ^c ( A - 1 ) ) ) ) = ( x e. RR+ |-> ( ( ( exp ` ( A x. ( log ` x ) ) ) x. A ) x. ( 1 / x ) ) ) ) |
83 |
58 66 82
|
3eqtr4d |
|- ( A e. CC -> ( RR _D ( x e. RR+ |-> ( x ^c A ) ) ) = ( x e. RR+ |-> ( A x. ( x ^c ( A - 1 ) ) ) ) ) |