| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
| 2 |
1
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ℝ ∈ { ℝ , ℂ } ) |
| 3 |
|
relogcl |
⊢ ( 𝑥 ∈ ℝ+ → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 5 |
|
rpreccl |
⊢ ( 𝑥 ∈ ℝ+ → ( 1 / 𝑥 ) ∈ ℝ+ ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ( 1 / 𝑥 ) ∈ ℝ+ ) |
| 7 |
|
recn |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) |
| 8 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝐴 · 𝑦 ) ∈ ℂ ) |
| 9 |
|
efcl |
⊢ ( ( 𝐴 · 𝑦 ) ∈ ℂ → ( exp ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
| 10 |
8 9
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( exp ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
| 11 |
7 10
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℝ ) → ( exp ‘ ( 𝐴 · 𝑦 ) ) ∈ ℂ ) |
| 12 |
|
ovexd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℝ ) → ( ( exp ‘ ( 𝐴 · 𝑦 ) ) · 𝐴 ) ∈ V ) |
| 13 |
|
relogf1o |
⊢ ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ |
| 14 |
|
f1of |
⊢ ( ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ → ( log ↾ ℝ+ ) : ℝ+ ⟶ ℝ ) |
| 15 |
13 14
|
mp1i |
⊢ ( 𝐴 ∈ ℂ → ( log ↾ ℝ+ ) : ℝ+ ⟶ ℝ ) |
| 16 |
15
|
feqmptd |
⊢ ( 𝐴 ∈ ℂ → ( log ↾ ℝ+ ) = ( 𝑥 ∈ ℝ+ ↦ ( ( log ↾ ℝ+ ) ‘ 𝑥 ) ) ) |
| 17 |
|
fvres |
⊢ ( 𝑥 ∈ ℝ+ → ( ( log ↾ ℝ+ ) ‘ 𝑥 ) = ( log ‘ 𝑥 ) ) |
| 18 |
17
|
mpteq2ia |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( log ↾ ℝ+ ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) |
| 19 |
16 18
|
eqtrdi |
⊢ ( 𝐴 ∈ ℂ → ( log ↾ ℝ+ ) = ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ) |
| 20 |
19
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ℝ D ( log ↾ ℝ+ ) ) = ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ) ) |
| 21 |
|
dvrelog |
⊢ ( ℝ D ( log ↾ ℝ+ ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) |
| 22 |
20 21
|
eqtr3di |
⊢ ( 𝐴 ∈ ℂ → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ) |
| 23 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 24 |
23
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
| 25 |
|
toponmax |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) → ℂ ∈ ( TopOpen ‘ ℂfld ) ) |
| 26 |
24 25
|
mp1i |
⊢ ( 𝐴 ∈ ℂ → ℂ ∈ ( TopOpen ‘ ℂfld ) ) |
| 27 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 28 |
27
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ℝ ⊆ ℂ ) |
| 29 |
|
dfss2 |
⊢ ( ℝ ⊆ ℂ ↔ ( ℝ ∩ ℂ ) = ℝ ) |
| 30 |
28 29
|
sylib |
⊢ ( 𝐴 ∈ ℂ → ( ℝ ∩ ℂ ) = ℝ ) |
| 31 |
|
ovexd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( exp ‘ ( 𝐴 · 𝑦 ) ) · 𝐴 ) ∈ V ) |
| 32 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
| 33 |
32
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ℂ ∈ { ℝ , ℂ } ) |
| 34 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 35 |
|
efcl |
⊢ ( 𝑥 ∈ ℂ → ( exp ‘ 𝑥 ) ∈ ℂ ) |
| 36 |
35
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( exp ‘ 𝑥 ) ∈ ℂ ) |
| 37 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → 𝑦 ∈ ℂ ) |
| 38 |
|
1cnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → 1 ∈ ℂ ) |
| 39 |
33
|
dvmptid |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ 𝑦 ) ) = ( 𝑦 ∈ ℂ ↦ 1 ) ) |
| 40 |
|
id |
⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) |
| 41 |
33 37 38 39 40
|
dvmptcmul |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 1 ) ) ) |
| 42 |
|
mulrid |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · 1 ) = 𝐴 ) |
| 43 |
42
|
mpteq2dv |
⊢ ( 𝐴 ∈ ℂ → ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 1 ) ) = ( 𝑦 ∈ ℂ ↦ 𝐴 ) ) |
| 44 |
41 43
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( 𝐴 · 𝑦 ) ) ) = ( 𝑦 ∈ ℂ ↦ 𝐴 ) ) |
| 45 |
|
dvef |
⊢ ( ℂ D exp ) = exp |
| 46 |
|
eff |
⊢ exp : ℂ ⟶ ℂ |
| 47 |
46
|
a1i |
⊢ ( 𝐴 ∈ ℂ → exp : ℂ ⟶ ℂ ) |
| 48 |
47
|
feqmptd |
⊢ ( 𝐴 ∈ ℂ → exp = ( 𝑥 ∈ ℂ ↦ ( exp ‘ 𝑥 ) ) ) |
| 49 |
48
|
eqcomd |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℂ ↦ ( exp ‘ 𝑥 ) ) = exp ) |
| 50 |
49
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( exp ‘ 𝑥 ) ) ) = ( ℂ D exp ) ) |
| 51 |
45 50 49
|
3eqtr4a |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( exp ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( exp ‘ 𝑥 ) ) ) |
| 52 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐴 · 𝑦 ) → ( exp ‘ 𝑥 ) = ( exp ‘ ( 𝐴 · 𝑦 ) ) ) |
| 53 |
33 33 8 34 36 36 44 51 52 52
|
dvmptco |
⊢ ( 𝐴 ∈ ℂ → ( ℂ D ( 𝑦 ∈ ℂ ↦ ( exp ‘ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑦 ∈ ℂ ↦ ( ( exp ‘ ( 𝐴 · 𝑦 ) ) · 𝐴 ) ) ) |
| 54 |
23 2 26 30 10 31 53
|
dvmptres3 |
⊢ ( 𝐴 ∈ ℂ → ( ℝ D ( 𝑦 ∈ ℝ ↦ ( exp ‘ ( 𝐴 · 𝑦 ) ) ) ) = ( 𝑦 ∈ ℝ ↦ ( ( exp ‘ ( 𝐴 · 𝑦 ) ) · 𝐴 ) ) ) |
| 55 |
|
oveq2 |
⊢ ( 𝑦 = ( log ‘ 𝑥 ) → ( 𝐴 · 𝑦 ) = ( 𝐴 · ( log ‘ 𝑥 ) ) ) |
| 56 |
55
|
fveq2d |
⊢ ( 𝑦 = ( log ‘ 𝑥 ) → ( exp ‘ ( 𝐴 · 𝑦 ) ) = ( exp ‘ ( 𝐴 · ( log ‘ 𝑥 ) ) ) ) |
| 57 |
56
|
oveq1d |
⊢ ( 𝑦 = ( log ‘ 𝑥 ) → ( ( exp ‘ ( 𝐴 · 𝑦 ) ) · 𝐴 ) = ( ( exp ‘ ( 𝐴 · ( log ‘ 𝑥 ) ) ) · 𝐴 ) ) |
| 58 |
2 2 4 6 11 12 22 54 56 57
|
dvmptco |
⊢ ( 𝐴 ∈ ℂ → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( exp ‘ ( 𝐴 · ( log ‘ 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( ( exp ‘ ( 𝐴 · ( log ‘ 𝑥 ) ) ) · 𝐴 ) · ( 1 / 𝑥 ) ) ) ) |
| 59 |
|
rpcn |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℂ ) |
| 60 |
59
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℂ ) |
| 61 |
|
rpne0 |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ≠ 0 ) |
| 62 |
61
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ≠ 0 ) |
| 63 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
| 64 |
60 62 63
|
cxpefd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ↑𝑐 𝐴 ) = ( exp ‘ ( 𝐴 · ( log ‘ 𝑥 ) ) ) ) |
| 65 |
64
|
mpteq2dva |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 ↑𝑐 𝐴 ) ) = ( 𝑥 ∈ ℝ+ ↦ ( exp ‘ ( 𝐴 · ( log ‘ 𝑥 ) ) ) ) ) |
| 66 |
65
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 ↑𝑐 𝐴 ) ) ) = ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( exp ‘ ( 𝐴 · ( log ‘ 𝑥 ) ) ) ) ) ) |
| 67 |
|
1cnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → 1 ∈ ℂ ) |
| 68 |
60 62 63 67
|
cxpsubd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ↑𝑐 ( 𝐴 − 1 ) ) = ( ( 𝑥 ↑𝑐 𝐴 ) / ( 𝑥 ↑𝑐 1 ) ) ) |
| 69 |
60
|
cxp1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ↑𝑐 1 ) = 𝑥 ) |
| 70 |
69
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝑥 ↑𝑐 𝐴 ) / ( 𝑥 ↑𝑐 1 ) ) = ( ( 𝑥 ↑𝑐 𝐴 ) / 𝑥 ) ) |
| 71 |
60 63
|
cxpcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ↑𝑐 𝐴 ) ∈ ℂ ) |
| 72 |
71 60 62
|
divrecd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝑥 ↑𝑐 𝐴 ) / 𝑥 ) = ( ( 𝑥 ↑𝑐 𝐴 ) · ( 1 / 𝑥 ) ) ) |
| 73 |
68 70 72
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ↑𝑐 ( 𝐴 − 1 ) ) = ( ( 𝑥 ↑𝑐 𝐴 ) · ( 1 / 𝑥 ) ) ) |
| 74 |
73
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ( 𝐴 · ( 𝑥 ↑𝑐 ( 𝐴 − 1 ) ) ) = ( 𝐴 · ( ( 𝑥 ↑𝑐 𝐴 ) · ( 1 / 𝑥 ) ) ) ) |
| 75 |
6
|
rpcnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ( 1 / 𝑥 ) ∈ ℂ ) |
| 76 |
63 71 75
|
mul12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ( 𝐴 · ( ( 𝑥 ↑𝑐 𝐴 ) · ( 1 / 𝑥 ) ) ) = ( ( 𝑥 ↑𝑐 𝐴 ) · ( 𝐴 · ( 1 / 𝑥 ) ) ) ) |
| 77 |
71 63 75
|
mulassd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ( ( ( 𝑥 ↑𝑐 𝐴 ) · 𝐴 ) · ( 1 / 𝑥 ) ) = ( ( 𝑥 ↑𝑐 𝐴 ) · ( 𝐴 · ( 1 / 𝑥 ) ) ) ) |
| 78 |
76 77
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ( 𝐴 · ( ( 𝑥 ↑𝑐 𝐴 ) · ( 1 / 𝑥 ) ) ) = ( ( ( 𝑥 ↑𝑐 𝐴 ) · 𝐴 ) · ( 1 / 𝑥 ) ) ) |
| 79 |
64
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝑥 ↑𝑐 𝐴 ) · 𝐴 ) = ( ( exp ‘ ( 𝐴 · ( log ‘ 𝑥 ) ) ) · 𝐴 ) ) |
| 80 |
79
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ( ( ( 𝑥 ↑𝑐 𝐴 ) · 𝐴 ) · ( 1 / 𝑥 ) ) = ( ( ( exp ‘ ( 𝐴 · ( log ‘ 𝑥 ) ) ) · 𝐴 ) · ( 1 / 𝑥 ) ) ) |
| 81 |
74 78 80
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ( 𝐴 · ( 𝑥 ↑𝑐 ( 𝐴 − 1 ) ) ) = ( ( ( exp ‘ ( 𝐴 · ( log ‘ 𝑥 ) ) ) · 𝐴 ) · ( 1 / 𝑥 ) ) ) |
| 82 |
81
|
mpteq2dva |
⊢ ( 𝐴 ∈ ℂ → ( 𝑥 ∈ ℝ+ ↦ ( 𝐴 · ( 𝑥 ↑𝑐 ( 𝐴 − 1 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( ( exp ‘ ( 𝐴 · ( log ‘ 𝑥 ) ) ) · 𝐴 ) · ( 1 / 𝑥 ) ) ) ) |
| 83 |
58 66 82
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 ↑𝑐 𝐴 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 𝐴 · ( 𝑥 ↑𝑐 ( 𝐴 − 1 ) ) ) ) ) |