Metamath Proof Explorer


Theorem djhjlj

Description: DVecH vector space closed subspace join in terms of lattice join. (Contributed by NM, 9-Aug-2014)

Ref Expression
Hypotheses djhj.k ˙=joinK
djhj.h H=LHypK
djhj.i I=DIsoHKW
djhj.j J=joinHKW
djhj.w φKHLWH
djhj.x φXranI
djhj.y φYranI
Assertion djhjlj φXJY=II-1X˙I-1Y

Proof

Step Hyp Ref Expression
1 djhj.k ˙=joinK
2 djhj.h H=LHypK
3 djhj.i I=DIsoHKW
4 djhj.j J=joinHKW
5 djhj.w φKHLWH
6 djhj.x φXranI
7 djhj.y φYranI
8 eqid BaseK=BaseK
9 8 2 3 dihcnvcl KHLWHXranII-1XBaseK
10 5 6 9 syl2anc φI-1XBaseK
11 8 2 3 dihcnvcl KHLWHYranII-1YBaseK
12 5 7 11 syl2anc φI-1YBaseK
13 8 1 2 3 4 djhlj KHLWHI-1XBaseKI-1YBaseKII-1X˙I-1Y=II-1XJII-1Y
14 5 10 12 13 syl12anc φII-1X˙I-1Y=II-1XJII-1Y
15 2 3 dihcnvid2 KHLWHXranIII-1X=X
16 5 6 15 syl2anc φII-1X=X
17 2 3 dihcnvid2 KHLWHYranIII-1Y=Y
18 5 7 17 syl2anc φII-1Y=Y
19 16 18 oveq12d φII-1XJII-1Y=XJY
20 14 19 eqtr2d φXJY=II-1X˙I-1Y