Metamath Proof Explorer


Theorem djuen

Description: Disjoint unions of equinumerous sets are equinumerous. (Contributed by NM, 28-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion djuen A B C D A ⊔︀ C B ⊔︀ D

Proof

Step Hyp Ref Expression
1 0ex V
2 relen Rel
3 2 brrelex1i A B A V
4 xpsnen2g V A V × A A
5 1 3 4 sylancr A B × A A
6 2 brrelex2i A B B V
7 xpsnen2g V B V × B B
8 1 6 7 sylancr A B × B B
9 8 ensymd A B B × B
10 entr A B B × B A × B
11 9 10 mpdan A B A × B
12 entr × A A A × B × A × B
13 5 11 12 syl2anc A B × A × B
14 1on 1 𝑜 On
15 2 brrelex1i C D C V
16 xpsnen2g 1 𝑜 On C V 1 𝑜 × C C
17 14 15 16 sylancr C D 1 𝑜 × C C
18 2 brrelex2i C D D V
19 xpsnen2g 1 𝑜 On D V 1 𝑜 × D D
20 14 18 19 sylancr C D 1 𝑜 × D D
21 20 ensymd C D D 1 𝑜 × D
22 entr C D D 1 𝑜 × D C 1 𝑜 × D
23 21 22 mpdan C D C 1 𝑜 × D
24 entr 1 𝑜 × C C C 1 𝑜 × D 1 𝑜 × C 1 𝑜 × D
25 17 23 24 syl2anc C D 1 𝑜 × C 1 𝑜 × D
26 xp01disjl × A 1 𝑜 × C =
27 xp01disjl × B 1 𝑜 × D =
28 unen × A × B 1 𝑜 × C 1 𝑜 × D × A 1 𝑜 × C = × B 1 𝑜 × D = × A 1 𝑜 × C × B 1 𝑜 × D
29 26 27 28 mpanr12 × A × B 1 𝑜 × C 1 𝑜 × D × A 1 𝑜 × C × B 1 𝑜 × D
30 13 25 29 syl2an A B C D × A 1 𝑜 × C × B 1 𝑜 × D
31 df-dju A ⊔︀ C = × A 1 𝑜 × C
32 df-dju B ⊔︀ D = × B 1 𝑜 × D
33 30 31 32 3brtr4g A B C D A ⊔︀ C B ⊔︀ D