Metamath Proof Explorer


Theorem djuexb

Description: The disjoint union of two classes is a set iff both classes are sets. (Contributed by Jim Kingdon, 6-Sep-2023)

Ref Expression
Assertion djuexb AVBVA⊔︀BV

Proof

Step Hyp Ref Expression
1 djuex AVBVA⊔︀BV
2 df-dju A⊔︀B=×A1𝑜×B
3 2 eleq1i A⊔︀BV×A1𝑜×BV
4 unexb ×AV1𝑜×BV×A1𝑜×BV
5 3 4 bitr4i A⊔︀BV×AV1𝑜×BV
6 0nep0
7 6 necomi
8 rnexg ×AVran×AV
9 rnxp ran×A=A
10 9 eleq1d ran×AVAV
11 8 10 imbitrid ×AVAV
12 7 11 ax-mp ×AVAV
13 1oex 1𝑜V
14 13 snnz 1𝑜
15 rnexg 1𝑜×BVran1𝑜×BV
16 rnxp 1𝑜ran1𝑜×B=B
17 16 eleq1d 1𝑜ran1𝑜×BVBV
18 15 17 imbitrid 1𝑜1𝑜×BVBV
19 14 18 ax-mp 1𝑜×BVBV
20 12 19 anim12i ×AV1𝑜×BVAVBV
21 5 20 sylbi A⊔︀BVAVBV
22 1 21 impbii AVBVA⊔︀BV