Metamath Proof Explorer


Theorem djulf1o

Description: The left injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022)

Ref Expression
Assertion djulf1o inl:V1-1 onto×V

Proof

Step Hyp Ref Expression
1 df-inl inl=xVx
2 0ex V
3 2 snid
4 opelxpi xVx×V
5 3 4 mpan xVx×V
6 5 adantl xVx×V
7 fvexd y×V2ndyV
8 1st2nd2 y×Vy=1sty2ndy
9 xp1st y×V1sty
10 elsni 1sty1sty=
11 9 10 syl y×V1sty=
12 11 opeq1d y×V1sty2ndy=2ndy
13 8 12 eqtrd y×Vy=2ndy
14 13 eqeq2d y×Vx=yx=2ndy
15 eqcom x=yy=x
16 eqid =
17 vex xV
18 2 17 opth x=2ndy=x=2ndy
19 16 18 mpbiran x=2ndyx=2ndy
20 14 15 19 3bitr3g y×Vy=xx=2ndy
21 20 bicomd y×Vx=2ndyy=x
22 21 ad2antll xVy×Vx=2ndyy=x
23 1 6 7 22 f1o2d inl:V1-1 onto×V
24 23 mptru inl:V1-1 onto×V