Metamath Proof Explorer


Theorem djuxpdom

Description: Cartesian product dominates disjoint union for sets with cardinality greater than 1. Similar to Proposition 10.36 of TakeutiZaring p. 93. (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion djuxpdom 1𝑜A1𝑜BA⊔︀BA×B

Proof

Step Hyp Ref Expression
1 df-dju A⊔︀B=×A1𝑜×B
2 0ex V
3 relsdom Rel
4 3 brrelex2i 1𝑜AAV
5 xpsnen2g VAV×AA
6 2 4 5 sylancr 1𝑜A×AA
7 sdomen2 ×AA1𝑜×A1𝑜A
8 6 7 syl 1𝑜A1𝑜×A1𝑜A
9 8 ibir 1𝑜A1𝑜×A
10 1on 1𝑜On
11 3 brrelex2i 1𝑜BBV
12 xpsnen2g 1𝑜OnBV1𝑜×BB
13 10 11 12 sylancr 1𝑜B1𝑜×BB
14 sdomen2 1𝑜×BB1𝑜1𝑜×B1𝑜B
15 13 14 syl 1𝑜B1𝑜1𝑜×B1𝑜B
16 15 ibir 1𝑜B1𝑜1𝑜×B
17 unxpdom 1𝑜×A1𝑜1𝑜×B×A1𝑜×B×A×1𝑜×B
18 9 16 17 syl2an 1𝑜A1𝑜B×A1𝑜×B×A×1𝑜×B
19 1 18 eqbrtrid 1𝑜A1𝑜BA⊔︀B×A×1𝑜×B
20 xpen ×AA1𝑜×BB×A×1𝑜×BA×B
21 6 13 20 syl2an 1𝑜A1𝑜B×A×1𝑜×BA×B
22 domentr A⊔︀B×A×1𝑜×B×A×1𝑜×BA×BA⊔︀BA×B
23 19 21 22 syl2anc 1𝑜A1𝑜BA⊔︀BA×B