Metamath Proof Explorer


Theorem dmmpossx

Description: The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015)

Ref Expression
Hypothesis fmpox.1 F = x A , y B C
Assertion dmmpossx dom F x A x × B

Proof

Step Hyp Ref Expression
1 fmpox.1 F = x A , y B C
2 nfcv _ u B
3 nfcsb1v _ x u / x B
4 nfcv _ u C
5 nfcv _ v C
6 nfcsb1v _ x u / x v / y C
7 nfcv _ y u
8 nfcsb1v _ y v / y C
9 7 8 nfcsbw _ y u / x v / y C
10 csbeq1a x = u B = u / x B
11 csbeq1a y = v C = v / y C
12 csbeq1a x = u v / y C = u / x v / y C
13 11 12 sylan9eqr x = u y = v C = u / x v / y C
14 2 3 4 5 6 9 10 13 cbvmpox x A , y B C = u A , v u / x B u / x v / y C
15 vex u V
16 vex v V
17 15 16 op1std t = u v 1 st t = u
18 17 csbeq1d t = u v 1 st t / x 2 nd t / y C = u / x 2 nd t / y C
19 15 16 op2ndd t = u v 2 nd t = v
20 19 csbeq1d t = u v 2 nd t / y C = v / y C
21 20 csbeq2dv t = u v u / x 2 nd t / y C = u / x v / y C
22 18 21 eqtrd t = u v 1 st t / x 2 nd t / y C = u / x v / y C
23 22 mpomptx t u A u × u / x B 1 st t / x 2 nd t / y C = u A , v u / x B u / x v / y C
24 14 1 23 3eqtr4i F = t u A u × u / x B 1 st t / x 2 nd t / y C
25 24 dmmptss dom F u A u × u / x B
26 nfcv _ u x × B
27 nfcv _ x u
28 27 3 nfxp _ x u × u / x B
29 sneq x = u x = u
30 29 10 xpeq12d x = u x × B = u × u / x B
31 26 28 30 cbviun x A x × B = u A u × u / x B
32 25 31 sseqtrri dom F x A x × B