Metamath Proof Explorer


Theorem dmmpossx

Description: The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015)

Ref Expression
Hypothesis fmpox.1 F=xA,yBC
Assertion dmmpossx domFxAx×B

Proof

Step Hyp Ref Expression
1 fmpox.1 F=xA,yBC
2 nfcv _uB
3 nfcsb1v _xu/xB
4 nfcv _uC
5 nfcv _vC
6 nfcsb1v _xu/xv/yC
7 nfcv _yu
8 nfcsb1v _yv/yC
9 7 8 nfcsbw _yu/xv/yC
10 csbeq1a x=uB=u/xB
11 csbeq1a y=vC=v/yC
12 csbeq1a x=uv/yC=u/xv/yC
13 11 12 sylan9eqr x=uy=vC=u/xv/yC
14 2 3 4 5 6 9 10 13 cbvmpox xA,yBC=uA,vu/xBu/xv/yC
15 vex uV
16 vex vV
17 15 16 op1std t=uv1stt=u
18 17 csbeq1d t=uv1stt/x2ndt/yC=u/x2ndt/yC
19 15 16 op2ndd t=uv2ndt=v
20 19 csbeq1d t=uv2ndt/yC=v/yC
21 20 csbeq2dv t=uvu/x2ndt/yC=u/xv/yC
22 18 21 eqtrd t=uv1stt/x2ndt/yC=u/xv/yC
23 22 mpomptx tuAu×u/xB1stt/x2ndt/yC=uA,vu/xBu/xv/yC
24 14 1 23 3eqtr4i F=tuAu×u/xB1stt/x2ndt/yC
25 24 dmmptss domFuAu×u/xB
26 nfcv _ux×B
27 nfcv _xu
28 27 3 nfxp _xu×u/xB
29 sneq x=ux=u
30 29 10 xpeq12d x=ux×B=u×u/xB
31 26 28 30 cbviun xAx×B=uAu×u/xB
32 25 31 sseqtrri domFxAx×B