Metamath Proof Explorer


Theorem dmnnzd

Description: A domain has no zero-divisors (besides zero). (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses dmnnzd.1 G = 1 st R
dmnnzd.2 H = 2 nd R
dmnnzd.3 X = ran G
dmnnzd.4 Z = GId G
Assertion dmnnzd R Dmn A X B X A H B = Z A = Z B = Z

Proof

Step Hyp Ref Expression
1 dmnnzd.1 G = 1 st R
2 dmnnzd.2 H = 2 nd R
3 dmnnzd.3 X = ran G
4 dmnnzd.4 Z = GId G
5 eqid GId H = GId H
6 1 2 3 4 5 isdmn3 R Dmn R CRingOps GId H Z a X b X a H b = Z a = Z b = Z
7 6 simp3bi R Dmn a X b X a H b = Z a = Z b = Z
8 oveq1 a = A a H b = A H b
9 8 eqeq1d a = A a H b = Z A H b = Z
10 eqeq1 a = A a = Z A = Z
11 10 orbi1d a = A a = Z b = Z A = Z b = Z
12 9 11 imbi12d a = A a H b = Z a = Z b = Z A H b = Z A = Z b = Z
13 oveq2 b = B A H b = A H B
14 13 eqeq1d b = B A H b = Z A H B = Z
15 eqeq1 b = B b = Z B = Z
16 15 orbi2d b = B A = Z b = Z A = Z B = Z
17 14 16 imbi12d b = B A H b = Z A = Z b = Z A H B = Z A = Z B = Z
18 12 17 rspc2v A X B X a X b X a H b = Z a = Z b = Z A H B = Z A = Z B = Z
19 7 18 syl5com R Dmn A X B X A H B = Z A = Z B = Z
20 19 expd R Dmn A X B X A H B = Z A = Z B = Z
21 20 3imp2 R Dmn A X B X A H B = Z A = Z B = Z