Metamath Proof Explorer


Theorem domfi

Description: A set dominated by a finite set is finite. (Contributed by NM, 23-Mar-2006) (Revised by Mario Carneiro, 12-Mar-2015)

Ref Expression
Assertion domfi AFinBABFin

Proof

Step Hyp Ref Expression
1 domeng AFinBAxBxxA
2 ssfi AFinxAxFin
3 2 adantrl AFinBxxAxFin
4 enfii xFinBxBFin
5 4 adantrr xFinBxxABFin
6 3 5 sylancom AFinBxxABFin
7 6 ex AFinBxxABFin
8 7 exlimdv AFinxBxxABFin
9 1 8 sylbid AFinBABFin
10 9 imp AFinBABFin