Metamath Proof Explorer


Theorem domtr

Description: Transitivity of dominance relation. Theorem 17 of Suppes p. 94. (Contributed by NM, 4-Jun-1998) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Assertion domtr ABBCAC

Proof

Step Hyp Ref Expression
1 reldom Rel
2 vex yV
3 2 brdom xygg:x1-1y
4 vex zV
5 4 brdom yzff:y1-1z
6 exdistrv gfg:x1-1yf:y1-1zgg:x1-1yff:y1-1z
7 f1co f:y1-1zg:x1-1yfg:x1-1z
8 7 ancoms g:x1-1yf:y1-1zfg:x1-1z
9 vex fV
10 vex gV
11 9 10 coex fgV
12 f1eq1 h=fgh:x1-1zfg:x1-1z
13 11 12 spcev fg:x1-1zhh:x1-1z
14 8 13 syl g:x1-1yf:y1-1zhh:x1-1z
15 4 brdom xzhh:x1-1z
16 14 15 sylibr g:x1-1yf:y1-1zxz
17 16 exlimivv gfg:x1-1yf:y1-1zxz
18 6 17 sylbir gg:x1-1yff:y1-1zxz
19 3 5 18 syl2anb xyyzxz
20 1 19 vtoclr ABBCAC