Metamath Proof Explorer


Theorem drhmsubcALTV

Description: According to df-subc , the subcategories ( SubcatC ) of a category C are subsets of the homomorphisms of C (see subcssc and subcss2 ). Therefore, the set of division ring homomorphisms is a "subcategory" of the category of (unital) rings. (Contributed by AV, 20-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses drhmsubcALTV.c C = U DivRing
drhmsubcALTV.j J = r C , s C r RingHom s
Assertion drhmsubcALTV U V J Subcat RingCatALTV U

Proof

Step Hyp Ref Expression
1 drhmsubcALTV.c C = U DivRing
2 drhmsubcALTV.j J = r C , s C r RingHom s
3 drngring r DivRing r Ring
4 3 rgen r DivRing r Ring
5 4 1 2 srhmsubcALTV U V J Subcat RingCatALTV U