Metamath Proof Explorer


Theorem drhmsubcALTV

Description: According to df-subc , the subcategories ( SubcatC ) of a category C are subsets of the homomorphisms of C (see subcssc and subcss2 ). Therefore, the set of division ring homomorphisms is a "subcategory" of the category of (unital) rings. (Contributed by AV, 20-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses drhmsubcALTV.c C=UDivRing
drhmsubcALTV.j J=rC,sCrRingHoms
Assertion drhmsubcALTV UVJSubcatRingCatALTVU

Proof

Step Hyp Ref Expression
1 drhmsubcALTV.c C=UDivRing
2 drhmsubcALTV.j J=rC,sCrRingHoms
3 drngring rDivRingrRing
4 3 rgen rDivRingrRing
5 4 1 2 srhmsubcALTV UVJSubcatRingCatALTVU