Metamath Proof Explorer


Theorem drnginvrn0d

Description: A multiplicative inverse in a division ring is nonzero. ( recne0d analog). (Contributed by SN, 14-Aug-2024)

Ref Expression
Hypotheses drnginvrn0d.b B=BaseR
drnginvrn0d.0 0˙=0R
drnginvrn0d.i I=invrR
drnginvrn0d.r φRDivRing
drnginvrn0d.x φXB
drnginvrn0d.1 φX0˙
Assertion drnginvrn0d φIX0˙

Proof

Step Hyp Ref Expression
1 drnginvrn0d.b B=BaseR
2 drnginvrn0d.0 0˙=0R
3 drnginvrn0d.i I=invrR
4 drnginvrn0d.r φRDivRing
5 drnginvrn0d.x φXB
6 drnginvrn0d.1 φX0˙
7 1 2 3 drnginvrn0 RDivRingXBX0˙IX0˙
8 4 5 6 7 syl3anc φIX0˙