Metamath Proof Explorer


Theorem drngmulcanad

Description: Cancellation of a nonzero factor on the left for multiplication. ( mulcanad analog). (Contributed by SN, 14-Aug-2024)

Ref Expression
Hypotheses drngmulcanad.b B = Base R
drngmulcanad.0 0 ˙ = 0 R
drngmulcanad.t · ˙ = R
drngmulcanad.r φ R DivRing
drngmulcanad.x φ X B
drngmulcanad.y φ Y B
drngmulcanad.z φ Z B
drngmulcanad.1 φ Z 0 ˙
drngmulcanad.2 φ Z · ˙ X = Z · ˙ Y
Assertion drngmulcanad φ X = Y

Proof

Step Hyp Ref Expression
1 drngmulcanad.b B = Base R
2 drngmulcanad.0 0 ˙ = 0 R
3 drngmulcanad.t · ˙ = R
4 drngmulcanad.r φ R DivRing
5 drngmulcanad.x φ X B
6 drngmulcanad.y φ Y B
7 drngmulcanad.z φ Z B
8 drngmulcanad.1 φ Z 0 ˙
9 drngmulcanad.2 φ Z · ˙ X = Z · ˙ Y
10 9 oveq2d φ inv r R Z · ˙ Z · ˙ X = inv r R Z · ˙ Z · ˙ Y
11 eqid 1 R = 1 R
12 eqid inv r R = inv r R
13 1 2 3 11 12 4 7 8 drnginvrld φ inv r R Z · ˙ Z = 1 R
14 13 oveq1d φ inv r R Z · ˙ Z · ˙ X = 1 R · ˙ X
15 4 drngringd φ R Ring
16 1 2 12 4 7 8 drnginvrcld φ inv r R Z B
17 1 3 15 16 7 5 ringassd φ inv r R Z · ˙ Z · ˙ X = inv r R Z · ˙ Z · ˙ X
18 1 3 11 15 5 ringlidmd φ 1 R · ˙ X = X
19 14 17 18 3eqtr3d φ inv r R Z · ˙ Z · ˙ X = X
20 13 oveq1d φ inv r R Z · ˙ Z · ˙ Y = 1 R · ˙ Y
21 1 3 15 16 7 6 ringassd φ inv r R Z · ˙ Z · ˙ Y = inv r R Z · ˙ Z · ˙ Y
22 1 3 11 15 6 ringlidmd φ 1 R · ˙ Y = Y
23 20 21 22 3eqtr3d φ inv r R Z · ˙ Z · ˙ Y = Y
24 10 19 23 3eqtr3d φ X = Y