Step |
Hyp |
Ref |
Expression |
1 |
|
drngmulcanad.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
drngmulcanad.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
drngmulcanad.t |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
drngmulcanad.r |
⊢ ( 𝜑 → 𝑅 ∈ DivRing ) |
5 |
|
drngmulcanad.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
drngmulcanad.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
drngmulcanad.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
8 |
|
drngmulcanad.1 |
⊢ ( 𝜑 → 𝑍 ≠ 0 ) |
9 |
|
drngmulcanad.2 |
⊢ ( 𝜑 → ( 𝑍 · 𝑋 ) = ( 𝑍 · 𝑌 ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝜑 → ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · ( 𝑍 · 𝑋 ) ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · ( 𝑍 · 𝑌 ) ) ) |
11 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
12 |
|
eqid |
⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) |
13 |
1 2 3 11 12 4 7 8
|
drnginvrld |
⊢ ( 𝜑 → ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · 𝑍 ) = ( 1r ‘ 𝑅 ) ) |
14 |
13
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · 𝑍 ) · 𝑋 ) = ( ( 1r ‘ 𝑅 ) · 𝑋 ) ) |
15 |
4
|
drngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
16 |
1 2 12 4 7 8
|
drnginvrcld |
⊢ ( 𝜑 → ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) ∈ 𝐵 ) |
17 |
1 3 15 16 7 5
|
ringassd |
⊢ ( 𝜑 → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · 𝑍 ) · 𝑋 ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · ( 𝑍 · 𝑋 ) ) ) |
18 |
1 3 11 15 5
|
ringlidmd |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) · 𝑋 ) = 𝑋 ) |
19 |
14 17 18
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · ( 𝑍 · 𝑋 ) ) = 𝑋 ) |
20 |
13
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · 𝑍 ) · 𝑌 ) = ( ( 1r ‘ 𝑅 ) · 𝑌 ) ) |
21 |
1 3 15 16 7 6
|
ringassd |
⊢ ( 𝜑 → ( ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · 𝑍 ) · 𝑌 ) = ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · ( 𝑍 · 𝑌 ) ) ) |
22 |
1 3 11 15 6
|
ringlidmd |
⊢ ( 𝜑 → ( ( 1r ‘ 𝑅 ) · 𝑌 ) = 𝑌 ) |
23 |
20 21 22
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( invr ‘ 𝑅 ) ‘ 𝑍 ) · ( 𝑍 · 𝑌 ) ) = 𝑌 ) |
24 |
10 19 23
|
3eqtr3d |
⊢ ( 𝜑 → 𝑋 = 𝑌 ) |