Metamath Proof Explorer


Theorem dropab1

Description: Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion dropab1 xx=yxz|φ=yz|φ

Proof

Step Hyp Ref Expression
1 opeq1 x=yxz=yz
2 1 sps xx=yxz=yz
3 2 eqeq2d xx=yw=xzw=yz
4 3 anbi1d xx=yw=xzφw=yzφ
5 4 drex2 xx=yzw=xzφzw=yzφ
6 5 drex1 xx=yxzw=xzφyzw=yzφ
7 6 abbidv xx=yw|xzw=xzφ=w|yzw=yzφ
8 df-opab xz|φ=w|xzw=xzφ
9 df-opab yz|φ=w|yzw=yzφ
10 7 8 9 3eqtr4g xx=yxz|φ=yz|φ